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Notation 

Most of the notation used in this dissertation is taken directly from Maybeck 

[51]. 

Vectors, Matrices 

Scalars.  are denoted by upper or lower case letters in italic type. 

Vectors, are denoted by lower case letters in boldface type, as the vector x 

made up of components a:,-. 

Matrices, are denoted by upper case letters in boldface type, as the matrix A 

made up of elements Aij (ith row, jth column). 

Random Vectors (Stochastic Processes), Realizations (Samples), and Dummy Vari- 

ables 

Random vectors, are set in boldface sans serif type, as x made up of scalar 

components xt. 

Realizations,  of the random vector are set in boldface Roman type, as x: 

x(w,-) = x. 

Dummy variables, (for arguments of density or distribution functions, integra- 

tions, etc.) are denoted by the equivalent Greek letter, such as £ being associated 

with x: e.g., /x(0- The correspondences are (x,£)> (y>/»)> {*,()• 

Subscripts 

a : augmented      c : continuous-time     i,j, k, £,m,n : indices into a vector, 

d : discrete-time   t : true, truth model matrix or sequence 

IX 



Superscripts 

(•) 

transpose (matrix) 

inverse (matrix or transform) 

estimate 

complement (set), complex conjugate, or conjugate transform 

Matrix and Vector Relationships 

A>B 

A>B 

x > a 

A - B is positive definite 

A - B is positive semidefinite 

component-wise, X\ > Oi, x2 > a2,. • j ^-n i_ on 

Transforms and Operators 

£{■} 

*{■} 

*<■>{■} 

Discrete-Time Fourier transform 

Laplace transform 

Z transform 

Expectation operator; the expectation is taken with respect to 

the subscript. The subscript may be omitted when there is no 

threat of ambiguity. 

Sets 

Sets are denoted by a blackboard font. Some commonly used sets are: 

R All real numbers 

R- {r G R 9 r < 0} 

R+ {r G R 9 r > 0} 

Z All integers 

z- {z G Z 9 z < 0} 

z+ {z G Z 9 z > 0} 

N All natural numbers 

C All complex numbers 

x 
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Abstract 

The derivation of the power spectral density of the optimal input for system 

identification is addressed in this research. Optimality is defined in information theo- 

retic terms, with entropy quantifying the parameter-information content of the input 

and output measurement sequences pertaining to a discrete-time plant. The maxi- 

mization of entropy is performed in the context of three different scenarios. First, 

the case in which the average output power of the plant is constrained is considered. 

Second, input average power is constrained. Finally, the optimization is carried out 

unconstrained, but with penalties applied to both the input and output powers. Al- 

though the focus of this research is the enhancement of the parameter identification 

potential of general System Identification algorithms, a new and efficient System 

Identification algorithm that employs Iterated Weighted Least Squares is derived. 

Experimental evidence is presented which clearly illustrates the superiority of this 

algorithm. Furthermore, experiments are documented which corroborate and vali- 

date the maximum-entropy-based theory for optimal input design presented in this 

dissertation. 
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Optimal Inputs for System Identification 

/.   Introduction 

1.1    Motivation 

With System Identification (ID) as a goal, we can expect perfect results if 

three sets of assumptions hold. First, the system must conform to the controls 

engineer's standard assumptions of linearity and time-invariance (LTI).1 Second, 

we require noise-free measurements of the input and output histories. Third, we 

must provide excitation which is sufficient to make all the unknown parameters 

observable. The first set of assumptions are not overly restrictive. Although any true 

system is probably nonlinear and time-variant, the plant under inspection probably 

behaves linearly within some neighborhood about an operating point. Furthermore, 

most systems of interest exhibit slowly varying dynamics, effectively time-invariant 

for short periods. However, the assumption of perfect measurements is specious. 

We should always expect some level of corruption in the measurements through a 

combination of imperfect sensors or numerical quantization noise. 

We can combat the effects of measurement noise by many techniques, all of 

which involve increasing some quantity related to the signal-to-noise ratio (SNR). 

One obvious solution involves increasing the magnitude of the signals to measure 

(assuming the noise is independent of the measured quantity). However, we usually 

do not wish to drive the system to extreme levels, motivating some sort of constraints 

on the input and output pairs. Furthermore, simply increasing the SNR is not a 

panacea for ID, as is shown in Section 6.5. Since we are faced with constraints on 

*Of course, LTI assumptions are required only in the case in which we wish to find an LTI plant 
model. Since this research is focused on linear plants with constant parameters (with the possible 
exception of sudden changes, as in a failure), we restrict our attention to LTI models. 



the magnitudes of the input and output, a logical approach involves increasing the 

signal levels in some judicious manner, with hopes of supplying the ID algorithm 

with the greatest possible amount of 'information' about the unknown system while 

limiting some metric describing the 'size' of the input and output. 

Another motivation for quantifying and increasing the 'information' contained 

in the input/output pairs is exemplified by one problem associated with a closed- 

loop adaptive control system. Namely, a system under adaptive control can tend 

to lose observability of the parameters describing the plant under control. When 

this happens, the ID portion of the controller may generate very poor estimates of 

the math-model for the plant which leads to an incorrect controller. Improperly 

generated controls send the plant into wild excursions which, in turn, increase the 

parameter observability. As the observability increases, parameter estimates become 

reliable, facilitating a correct control sequence to recapture the desired plant trajec- 

tory. Again, once the plant is settled down by the controller, parameter observability 

drops, and the cycle is repeated. This well-known phenomenon, known as 'bursting', 

is shown in a transparent manner by the following example. 

1.2   Bursting Example 

1.2.1    System Description. The system we will use in this example is 

undamped, second order, discrete-time, linear, and time-invariant. We describe the 

system with the difference equation 

Vk+i = Wh - Vk-i + b(uk + uk-i) (1) 

with measurements given by 

Zk = Vk + vk (2) 

Alternatively, we describe the system with the transfer function: 

zl — az + 1 



ref=0 —(£) 

Figure 1. System Under Adaptive Control 

where z is the forward shift operator. We wish to control the system with an adaptive 

controller set up as a regulator as shown in Figure 1. 

1.2.2    Controller Design.      Let us assume we wish for a type-one system for 

zero steady-state error. Thus, our desired open-loop transfer function is given by 

GH = 
1 

z-\ 
(4) 

where G denotes the transfer function of the plant while H represents the transfer 

function of the controller. Applying the Guillemin-Truxal method[14], we solve for 

the controller, G 

lz2 -az + 1 
G(z) = i- T (5) 

b     z2-l 

Equation (5) is based on perfect knowledge of the parameters, a and 6.   Since we 

are dealing with estimates of the parameters, we choose a controller design which 

does not try to cancel the system poles.   Rather, the controller should perform a 



near cancellation with zeros close to the poles but inside the unit circle. Thus, our 

desired controller is given by 

G(z) = 
1 z2 - 0.9a^+ 0.81 

I z2-l 
(6) 

where • indicates an estimate.   Now, we must derive the algorithm to supply the 

estimates. 

1.2.3   Estimation.      From Equation (1) we have 

Vk + Vk-2 

Vk-l + Vk-3 

which gives us 

yk-i   «fc-i + uk-2 

yk-2     Uk-2 + «fc-3 

a 

b 
(7) 

a 

b 

yk-i   Uk-i + uk-2 

yk-2     Uk-2 + Wfc-3 

-1   r 

(8) 
Vk + Vk-2 

yk-i + yk-3 

Equation (8) is based on perfect measurements.  Since we are dealing with noise- 

corrupted quantities, we have 

-1    r 

(9) 
a 

b 

Zk-l     Uk-l + Uk-2 

Zk-2     Uk-2 + Uk-3 

Zk + Zk-2 

Zk-l + Zk-3 

Careful inspection of Equations (8) and (9) begins to show us the source of the 

bursting problem. As the controller does its job, the output goes to zero, yielding a 

singular regressor matrix. Since our estimation scheme relies on the inversion of this 

matrix, the estimates breakdown. 

1.2.4 Simulation Results. We see the effects of this break down of param- 

eter observability in Figure 2. These plots were produced by a simulation of the 

system described previously, with a = 1.8, b = 0.1 and very low measurement noise 

(a = 10"8). Figure 2(a) clearly shows the bursting of the parameter estimates. Fig- 

ure 2(b) displays the wildly oscillating output caused by improper control, brought 

on by incorrect parameter estimates. Also included in Figure 2(b) is the condition 
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under adaptive control, (a) shows the parameter estimates versus time, 
(b) shows the plant output and the regressor condition number versus 

time. 
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Figure 3. System Under Adaptive Control With an Auxiliary Input 

number of the regressor matrix. The condition number is interesting to us in that 

it provides a measure of the singularity of the matrix to be inverted in the estima- 

tion scheme employed for this example. Comparing the plots, we see that as the 

system is regulated the condition number begins to rise. As the regressor matrix 

becomes ill-conditioned, the parameter estimates breakdown, beginning the cycle of 

unregulated output followed by better estimates, etc. 

How can the bursting problem be alleviated? One solution is closely linked 

to the goal of this research. Namely, we inject an auxiliary input into the plant's 

input stream as shown in Figure 3. We see that this block diagram is identical to 

that shown in Figure 1, except we have added the auxiliary input w. If w is chosen 

properly, then the unknown parameters will always be observable (a condition known 

as persistent excitation, defined in [1, 2, 3, 42] and almost any other text devoted to 

System Identification). 

A sufficient condition for persistent excitation is that the spectrum of the input 

be non-zero for at least as many points in frequency as the number of unknown 

parameters [44].   In order to ensure a persistently exciting input, we use a small- 



variance white noise sequence for w (cr* = 10-8).   Thus, the input is persistently- 

exciting of arbitrary order. 

The results of the simulation with w injected are shown in Figure 4. We see in 

Figure 4(a) that the parameter estimates are now quite stable, with only sporadic 

excursions from the correct values. More importantly, the output (Figure 4)b)) is 

held tightly on zero, with no bursting. Thus, the adaptive regulator is enhanced by 

the auxiliary input. 

1.2.5 Summary for Bursting Example. Bursting is a real concern in adap- 

tive control. The example presented here clearly shows the effects of parameter 

observability break-down as an adaptive controller relies on parameter estimates 

which are derived from measurement-noise-corrupted outputs and inputs under con- 

ditions of poor excitation. Furthermore, we see that an auxiliary input injected into 

the plant's input can be designed to enhance excitation and facilitate parameter es- 

timation, allowing an adaptive controller to regulate successfully the output of an 

unknown plant. 

1.3    Proposed Adaptive Controller With Auxiliary Inputs 

Given the problem of bursting in adaptively controlled systems, we envision a 

system which incorporates an input signal generator. The generator's function is to 

inject auxiliary inputs in order to keep parameter identifiability high. 

Figure 5 shows a block diagram of the proposed adaptive control concept. That 

is, the proposed system is presented here as a conceptual tool, to illustrate the role 

System ID can play in adaptive control. The controller consists of the combination 

of prefilter and feed-forward compensator blocks which are designed to adapt to the 

changing plant. These control elements are controlled by the current best estimate of 

the plant parameters, thus achieving adaptivity. The estimates of the plant-model 

parameters are supplied by the ID block, along with an 'Excitation Level' signal. 
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The Excitation Level is a quantity which determines the confidence we have in the 

parameter estimates. For instance, the ID algorithm may generate an estimate of the 

parameter estimate error covariance, which could be used to generate the Excitation 

Level. This Excitation Level signal serves two purposes: First, this signal triggers 

a Sample and Hold which holds the last 'good' estimate of the parameters; Second, 

the Excitation Level triggers an Input Generator which produces probing inputs 

designed to enhance the identifiability of the parameters when such enhancement is 

required. 

1.4    Summary of Current Literature 

This research will focus on improving system identification with optimally (or 

sub-optimally) chosen inputs. Much research has been aimed at enhancing identifi- 

cation via designed inputs (also called experiment design). For example, Olmstead 

[67] derived a method for designing a constant feedback matrix which increases the 

information on parameters in the input/output pairs. Olmstead's work yields a ma- 

trix which modifies the output linearly, producing feedback inputs. In contrast, this 



research will strive to design an active and adaptive input generator. The input gen- 

erator uses knowledge of the history of the input, output, and parameter estimates 

to generate an input sequence which improves the ability of the system identification 

algorithm to extract parameter values. Thus, this research strives to improve the 

estimates produced by the ID algorithm. 

Like Olmstead, many others have contributed to the field of input synthesis for 

identification. A representative set of works in this area is given by [1, 2, 3, 25, 28, 

29, 45, 55, 56, 60, 61, 62, 67, 85, 86, 88, 92, 95, 96]. In many cases, the criterion for 

input optimality is linked directly to the ID technique employed. That is, an input 

is optimal only for a given identification algorithm. 

In contrast, the work documented in this dissertation is aimed at maximizing 

the parameter information contained in the unknown plant's input/output pairs, 

independent of the chosen ID algorithm. Thus, the definition for optimality is not 

limited to any one form of identification, although a good ID algorithm is required 

to properly evaluate the ensuing ID performance. Many works address the concept 

of information, including [10, 13, 57, 68, 79, 80]. 

Although the goal of this research is to derive inputs for good ID, many sources 

related to the field of System Identification algorithms were reviewed for this research. 

In particular, [4, 18, 19, 21, 24, 26, 31, 32, 36, 39, 41, 42, 43, 44, 54, 58, 63, 64, 65, 

69, 76, 84, 87, 90, 94] represent a small, but representative, portion of the work 

done in the field of System Identification. In the related field of fault, or change, 

detection references [6, 7, 8, 11, 12, 16, 22, 23, 33, 47, 48, 49, 50, 59, 66, 70, 71, 75, 

89, 91, 97] present various techniques designed to recognize and identify a change in 

the parameters defining the mathematical model of the plant. The excitation is also 

important to change detection in that the input must excite the plant such that the 

parameters under scrutiny are observable. Obviously, good ID allows the estimation 

of parameters which are subject to change, and hence, also solves the fault detection 

and isolation problem. 

10 



Returning to experiment design, Mehra [55] presents a survey of the literature 

relevant to optimal inputs for system identification as of 1974. Mehra's paper tells us 

that the optimal input to minimize the trace of the estimation error covariance matrix 

is a white noise sequence (when the input is constrained by energy or amplitude). 

Furthermore, the optimal input in terms of minimizing the trace of the inverse of 

the Fisher Information Matrix (FIM) is bang-bang, again for amplitude-constrained 

inputs. An important contribution by Mehra reduces the steady-state problem to 

finite dimensions by proving that an input consisting of a finite number of frequencies 

can be found such that it yields the same information matrix as any other stationary 

input with equal power. Mehra's paper also points out an important consideration: 

Much research maximizes the trace (or weighted trace) of the FIM since this approach 

yields an easily solved quadratic problem. However, this criterion can produce a 

singular FIM. Thus, maximization of the trace of the FIM should be undertaken with 

care. Furthermore, Mehra's paper concentrates on constrained inputs whereas we 

shall consider three scenarios: constraints on the inputs; constraints on the outputs; 

and penalized inputs and outputs in an unconstrained framework. 

Next, Gawthrop [24] discusses the problem of identification of systems in which 

a portion of the system is known. His paper allows us to identify systems which 

are polynomial, rather than linear, in the unknown parameters. For example, this 

technique allows one to identify an unknown system driven by known actuators. 

Unfortunately, assuming known actuators disallows us the chance to monitor the 

health of the actuators. This research will allow the identification of completely 

unknown plants, thereby directly allowing fault detection and isolation (FDI). 

Aoki [2] discusses generating optimal input signals to enhance identifiability. 

However, Aoki's metric for optimization is the trace of the information matrix. As 

we mentioned previously, this optimization criterion can lead to a singular FIM. 

Another paper by Mehra [56] presents several methods for solving the opti- 

mal input problem when using the trace of the FIM as the criterion and energy 
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constraints on the input. Mehra shows that the problem is quadratic, solvable via 

Riccati equations, the Ritz-Galerkin method, or the resolvent method. An example 

contained in the paper illustrates that the FIM tends to become singular; the con- 

dition number becomes large for the optimal input. Again, Mehra is dealing with 

constrained inputs, while we do not impose this restriction. 

Ljung [42] treats the identification problem in the frequency domain, resulting 

in an infinite-dimensional problem. Although Ljung does not explicitly solve for an 

optimal input, the paper makes extensive use of the sequence driving the system. His 

criterion for good parameter estimates is that the discrete-time Fourier transform of 

the impulse response of the estimated transfer function be close to that of the actual 

system's transfer function. Ljung's approach is not suited to on-line ID, which is 

required for adaptive control. 

Similar to Olmstead, Ng [61] seeks optimal inputs via an input/output feedback 

element. His approach is to minimize the determinant of the FIM, yielding so- 

called D-optimal estimates of the parameters. Ng concludes that input-constrained 

optimization requires no feedback (i.e. open-loop identification), while constraints 

on the output require inputs as a combination of feedback and open-loop inputs. 

Furthermore, he points out the paradox inherent in optimal input design - one must 

have knowledge of the parameters in order to design the inputs which optimize the 

parameter estimates. This research will address this very paradox through iteration 

and adaptation of the inputs, based on current parameter estimates. 

Another paper by Ng [62] also uses the D-optimality criterion with constraints 

on the output power. Here, he concludes that the input is open-loop and constructed 

of a series of sinusoids. The sinusoidal inputs are found by solving a system of 

nonlinear equations. Again, the input design requires the use of the parameter 

values which we seek to estimate. As in Ljung's paper, this technique is suited only 

to off-line ID. 
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Later, Ng [60] worked around the problem of requiring knowledge of the pa- 

rameters by using an iterative approach. He used the estimates from each iteration 

to recalculate the optimal inputs for the next iteration. The technique outlined in 

his paper is again based on D-optimality, but here, Ng presents the optimal input as 

a solution of a system of linear equations plus one polynomial equation. Ng's work is 

not suited to on-line ID since each iteration requires an entire input/output history. 

Norton's paper [65] presents a departure from the standard stochastical ap- 

proach in which noises and parameters are modeled as stochastic processes resulting 

in a search for the mean and covariance of the probability density functions. Rather, 

Nortons work revolves about a model incorporating bounded noise which is used to 

find bounded regions in parameter space in which the parameters lie. His approach 

allows the system identification to be used as a fault detection algorithm, signaling 

when the parameter estimates leave a predetermined region. Since the parameters 

are estimated to lie in a region, these estimates can be used in conjunction with 

control system synthesis techniques relying on structured uncertainty. Another ap- 

pealing aspect of Norton's approach lies in the initialization of the algorithm; he 

allows the initial parameter region to consist of the entire parameter space. Thus, 

no prior knowledge of the parameters is required. 

Incomplete knowledge of the parameters, coupled with an input of insufficient 

order (defined in the sequel), can cause a phenomenon known as bursting, described 

by Anderson in [1]. Anderson describes bursting as unstable, possibly oscillatory 

behavior between quiescent periods in the output of an identification algorithm based 

on output errors, or residuals. The inputs causing bursting are said to be lacking 

persistency of excitation. The bursting phenomenon is also known to manifest itself 

in adaptively controlled systems for which the input lacks persistency (or, by the 

terminology employed in this dissertation, lacks sufficient order). Our proposed 

input generator will maintain the proper excitation, thus eliminating the bursting 

problem. 
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Gevers [25] presents methods to design inputs for identification which require 

knowledge of the true parameters making up the system model. The important 

difference in this work is that Gevers approaches the inputs in terms of the intended 

use of the parameter estimates. He concludes that a feedback scheme is appropriate 

for most applications. As we see in much of the literature, the design of the optimal 

inputs requires the knowledge of the parameters. 

The paradox involving the knowledge of the correct parameters inherent in the 

design of the optimal inputs continues throughout several other papers reviewed for 

this research. For example, see [4, 29]. Since we wish to apply system identification 

as a means to adaptive control and possibly fault detection, we desire to perform 

identification of the parameters with limited (or ideally, no) information about the 

parameters in the system model. Thus, we hope to probe the system based only on 

the history of parameter estimates (generated from a history of inputs and outputs) 

via an adaptive design of the input generator. 

1.5    Contributions 

The success of the research will contribute significantly to several different 

disciplines: system identification, adaptive control, and fault detection and isolation 

for reconfigurable control. The specific contributions are listed below: 

1. Optimal input power spectral density is derived for any arbitrarily colored mea- 

surement noise and plant combination. Thus, we are not confined to a white 

measurement noise model. Furthermore, the derivations allow us to consider 

constraints on either the input power or the output power. Additionally, the 

optimal input is derived for the unconstrained case, with weighting applied to 

the input and output power. 

2. An efficient and elegant ID algorithm is presented which correctly accounts 

for measurement noise and therefore yields good parameter estimates. The ID 
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algorithm adapts to changing parameter estimates in order to estimate prop- 

erly the equation error covariance (i.e., pseudo-measurement noise, defined in 

Chapter III), which is determined by the measurement noise and the dynam- 

ics of the system under test. Experiments show the paramount importance of 

measurement noise handling in identification. 

3. Theory and experiments are presented which underscore the nonlinearity of 

the System ID process. Although linear mathematical methods are used in 

the ID algorithm, said nonlinearity produces results which may surprise the 

engineer if he makes linear assumptions. 

1.6    Organization of the Dissertation 

The remainder of this dissertation is organized as follows. Chapter II covers 

deterministic estimation (modeling) in which all measured quantities are known per- 

fectly, or the measurement noise is very small. The deterministic setting is used to 

gain insights into the identification problem and to establish some limits on parame- 

ter identifiability. With the observability of the parameters established, Chapter III 

complicates the problem with the addition of measurement noise. This formulation 

is realistic since, in the physical world, no measurement device is ideal; at the very 

least, we must deal with quantization error in the digital computer. Chapter III 

presents a method to weight properly a least squares estimate of the parameters. 

This Weighted Least Squares approach is finally used in the ID algorithm mentioned 

in the Contributions section above. Next, Chapter IV gives a detailed discussion 

of information theory and the link between information and ID. The information 

theoretic concepts presented here are used in the derivation of several types of opti- 

mal inputs: optimality in the face of input power constraints; optimality for output 

power constraints; and unconstrained optimal inputs with penalties applied to the 

input and output powers. In each case, the measurement noise is treated as arbitrary, 

allowing for colored noise. Experimental evidence is presented in Chapter V which 
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supports the theory presented in Chapter IV. More experiments are used in Chapter 

VI to investigate the practical limits of identification and to illustrate the effects of 

parameter errors on root locations and on frequency response. Furthermore, this 

chapter presents some surprising conclusions concerning the non-monotonicity of ID 

error with respect to signal-to-noise ratio. Finally, Chapter VII offers conclusions 

and recommendations for future work. 
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II.   Deterministic Modeling 

While the system described in Chapter I incorporates a stochastic model of the 

plant, we begin with a deterministic model in which all inputs and outputs are known 

'perfectly'; the only noise affecting the problem is numeric. We have two reasons for 

initially ignoring physical noise. First, the mathematics are simpler, allowing us to 

develop some insights into the identification/modeling process. Without the com- 

plications involved with noisy signals, solvability conditions (akin to observability 

results in state estimation problems) can be established. Second, and more impor- 

tantly, we can use the deterministic setting to establish limits on the identifiability 

of the parameters. In addition, the limitations on computation imposed by numerics 

- viz., the digital computer's internal noise - are gauged. The identification scheme 

must be able to extract the parameter values with no process and measurement noise 

if we hope to identify in the presence of noise. 

2.1    Deterministic System Description 

We consider a finite-dimensional, linear, time-invariant (LTI), single-input 

single-output (SISO), discrete-time system described as: 

Equation (10) may be rewritten as 

(10) 

Vk = hfc-i* 

where 

(11) 

hfc-i   = 

6'   = 

-Vk-l     -Vk-2     •••     -Vk-n     Mfe-1     uk-2 

a\   a2   •••   an   bt   b2   •••   bn 

Uk-n 
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Modeling entails the development of an algorithm that yields the 2n plant parameters 

(aj and bj, j = 1,2,..., n) with perfect knowledge of yt and ut V I € {k - n,..., k}. 

2.2    Computation of the Parameters 

Equation (10) outlines one possible method to describe a discrete-time system. 

If we assume the true system conforms to such a description, we reasonably expect 

to estimate successfully the parameters contained in 6. Two factors determine the 

amount of success we can expect in the estimation. 

First, the form of the excitation (including initial conditions) is critical to 

the identification process. A degenerate example is zero input with zero initial 

conditions. Obviously, such an 'excitation' cannot provide information about the 

true system, for all linear systems will yield the same output of zero. This insight 

clearly illustrates that input affects the observability of the modeling problem, i.e., 

the identifiability of the parameters. 

Second, we must consider the size of the proposed 9 vector versus the dimension 

of the actual 0 vector, viz., over-modeling and under-modeling. For example, if the 

proposed model's parameter vector is smaller than the true parameter vector, the 

model cannot completely describe the true system, since some modes of the true 

system can not be represented. On the other hand, a proposed model that is larger 

than the true system might describe the true system (with selected model parameters 

set to zero). However, we will see that over-specifying the order of the plant (viz., 

over-modeling) creates parameter-observability problems. Hence, we will show that 

over-modeling is a bad option. 

Although a true system is probably infinite order, with a finite set of 'dominant' 

modes, the discussion in this chapter concerns concepts relevant to System ID; thus, 

we consider finite-order plants so we can explore the interaction between model and 

plant order. 
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2.3    Assumptions 

Since this research specifically addresses excitation for identification, we con- 

sider only the case in which model order is known, as is oftentimes the case in 

electro/mechanical-dynamical systems encountered in some of engineering, e.g., in 

flight control. By assumption, we know the number of parameters (2n), dispensing 

with the previous section's latter concern. Furthermore, we assume the system is 

bounded-input/bounded-output (BIBO) stable, allowing identification in the steady 

state. The first assumption is not overly restrictive; in science and engineering, we 

commonly have prior information about the number of dominant modes in a given 

system. For example, an aircraft's longitudinal motion typically is described by a 

pair of Phugoid poles and a pair of Short Period poles, plus known actuator poles, 

forming a model adequate for automatic control. The second assumption disallows a 

large set of real plants, but this research is concerned with steady-state excitation and 

experimentation, requiring a stable plant in the first place. With these assumptions, 

we can explore two different approaches to excitation for identification. 

The two approaches explored in this chapter are superposition of inputs and 

ensemble inputs. The former, described in detail in Section 2.4, is the more realistic 

approach, wherein the input is described as a finite sum of complex exponentials. 

This scheme allows us to describe the output as another finite sum of complex ex- 

ponentials and perform identification using linear regression on a history of outputs. 

The latter approach, ensemble inputs (Section 2.5), is a mathematical construct 

used to simplify the mathematics involved in proving some conjectures governing 

the requirements on the inputs for successful identification. 

2.4    Approach I - Sum of Exponential Inputs 

This approach involves the use of an input which is composed as a finite sum 

of distinct complex exponentials. We excite the system with such an input, wait for 
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steady-state behavior, and hope to calculate the parameter vector using a history of 

output measurements. 

The general input used for this analysis is: 

TV 

uk = J2Bir-, keZ,Bi,rieC (12) 
t'=l 

Since the system is assumed to be linear, we can apply superposition to calculate 

the output. Furthermore, the system is in steady state, so the output is the sum of 

complex gains applied to the exponential inputs: 

t=i 

Now, considering a history of q outputs, we can construct the following linear 

regressions: 

Vk hfc-l 

2/fc-i 
= 

hl-2 

_  Vk-q+1   _ .  h'fc-9   . 

e 

Or, in more compact notation, we express Equation (14) as 

yW - nW H«* 

where 

yi" = 

and 

w(«) 

Vk 

Vk-i 

Vk-q+l 

hfc-2 

h't k—q 

-J/fc-1     • • •       -J/fe-n       «fc-1     * * •       uk-n 

~Vk- -yk-n-q     Uk-q      - ' '     Uk-n-q 

(14) 

(15) 
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Now, if HJj._x is invertible, the parameter estimates (8) are 

6 = H (?) 
fc-i 

-l 

j   y{q) (16) 

H^ix is invertible if and only if it has full rank. Thus, identifiability of the parameters 

is contingent on q > 2n. Also, the 2n columns making up the matrix must be linearly 

independent. (We note that if HJ^ has full rank, 0 = 0.) The conditions for linear 

independence are captured within the following discussion. 

Definition 2.4.1 (Order of Excitation) The order of excitation is equal to the 

minimum number of terms in the summation: 

i 

required to describe the excitation (uk), where -ß,-,r,- £ C. 

For example, 

Uk .-(*)=|)w'-(äH 
is a second order excitation. 

We now list some conjectures relating the order of the input to the identifi- 

ability of the system. The following conjectures are explored and confirmed with 

experimental evidence later in this chapter. 

Conjecture 2.4.1 The rank o/Hj._a in steady state can be no greater than the order 

of the input. In other words, a necessary condition for identification in steady state 

is that the input order be at least as large as the number of unknown parameters. 

If we have access to the order of the plant, we strengthen the previous conjecture: 

Conjecture 2.4.2 // the order of the model and the order of the true system are 

equal, the window length (q) is greater than or equal to the number of parameters 

(In), and HJ^ is formed in steady state, then ir^ has full rank if and only if the 

order of the input is greater than or equal to the number of unknown parameters. 
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Note that these conjectures are proven indirectly via persistency of excitation argu- 

ments (e.g. see [44]). 

2.5    Approach II - Ensemble Information 

This approach is related to the former. Here, we conduct several experiments 

and compile the information from each into an 'ensemble information matrix' which 

we use to compute the parameter values. 

As in the previous discussion, we consider exciting the system with complex 

exponentials. However, we do not sum the exponentials into one input and use a 

history of outputs. Rather, each input takes the form 

uik = rf, r e C, i e N, k e Z 

producing an output of the form 

yik = Arf, At € C 

Substituting Equations (17) and (18) into Equation (10), we have 

(17) 

(18) 

* = £v-rj-*5>i»-rj (i9) 

Thus, we have a linear equation involving the parameters we wish to compute. Since 

there are 2n parameters, we conduct the thought-experiment 2n times and construct 

the 'ensemble information matrix' equation: 

Air? ' 1 ••• 

Anrn 1 ••• 

An+irn+i 1  ••• 

A2nr2n 1 ... 

m1—1 rl -Ai 

rn-l        _ 4 

-n-1 rn+l 

n—1 
'2n 

—An. +1 

-A 2n 

■Air? n-l 

— A  rn_1 

A mn~ 1 
-■^■n+l'n-l-1 

2nr2n 

K 

bi 

ai 

(20) 
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or, for notational ease, 

r = #0 (2i) 

Note that the parameter vector is rearranged in order to achieve the particular form 

for the * given in Equation (20). 

Inspecting Equation (20), we see that the 'ensemble information matrix', *, 

can be partitioned into the following sub-matrices: 

* 
Vx   AxVa 

V2   A2V2 

where Vi and V2 are Vandermonde matrices, having the form 

(22) 

V = 

rx     r2 

r2    r2 

1        '2 

and Ai and A2 are diagonal matrices.  This special structure of * should aid in 

deriving the conditions for which the system is identifiable. 

2.6    Equivalence of Ensemble and Summation Approaches 

We are interested in identifying the parameters in the system defined by: 

Consider an input consisting of a sum of 2n complex exponentials: 

(23) 

2n 

«* = ;>>.• r»G<c 

x=i 

In steady state, the output is given by: 

2n 

i=l 

(24) 

(25) 
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We have 2n parameters, so consider 2n measurements of the output: 

Vk 

Vk-2n+l 

= H£J« (26) 

where 

Tx(2n) 

2n 2n 2n 

5>?-" ^r-1      -E^r?- 
i=l 

2n 

1=1 

2n 

i=l 

2n 

2n 

E^r 
»=i 

2n 

£r-.k"3"+1    •••   J^r? Y^*-2n      _^A.r*-8-+l -5>r*-a" 

0   4 

i=i 

On 

öl 

i=l i=l t=l 

In order to solve for 0, we must have nonsingular HJ^.  Now, HJ^ is a Casorati 

[37] matrix for the set of sequences 

{2n 2n 2n 2n 2n "j 

E»"?-1, 5>?-a> ••• > E^-B, E-^-f-1, ... , E-^H 
i=i       i=i i=i       •=! *=i j 

So, H^ is nonsingular if and only if S is a linearly independent set of sequences. 

Thus, write a different Casorati matrix for the same set: 

K4 

2n 2n 2n 2n 2n 

E-.       Er,? 

i=i 
2n 

i=l 
2n 

E^       Erf 
i=i »=i 

E^ -5>r.- 
i=l i=l 

2n 2n 

E^r+1 -EM2 

-!>•? 
i=i 

2n 

2n 2n 

I 
i=l i=l 

i=l 

2n 

i=l 

2n 

i=l 

n+1 

Er.?"   Er.2n+1    •••   Erf""1    "EM2"   -   " E^rf""1 

i=l t=l 

2n 

E 
i=l 

(27) 
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So K is nonsingular <3> S is linearly independent <3> HJj.2^ is invertible. This particular 

form for K is chosen with hindsight. We will see the justification in the following 

discussion. 

Now, consider conducting 2n experiments with the exponentials used in the 

previous development. Recall from Equation (20) 

* = 

-n-l 

„n-1 

-n-1 rn+l 

-A, 

-Ar. 

An. +1 

-Air? n-1 

n-1 —Anr™ 

■■^n+l'n+1 

-n-1 

(28) 

1   •••   r?"1     -A2n    •••    -A2nr
n- 

Given this 'ensemble' approach, the parameters are identifiable if * is nonsingular. 

Now, consider the matrix product V* where V is the Vandermonde matrix 

given by 

V = 

r\     r2 

Jin     Jin 
"l        r2 

f2n 

2n 

2n 
r2n 

(29) 

Combining Equations (28) and (29), we have 

V* = 

2n 2n 

5>    5>2 
«=i     «=i 
2n 2n 

«=i 

2n 

«=1 

2n 

2n 2n 

5>? -E^ 
i=i «=i 

2n 2n 

D-r1 -£^,2 
=i »=i 

2n 

■5>r? 
j=i 

2n 

E^.r n+l 

2n 2n 

i=l 

2n 
„2n -TM 3n-l 

(30) 

&2n     &2n+l      ...     £r3n-l      _ £^2, 
,=1 t=l i=l i=l «=1 

Thus, V* = K. Now, V is a Vandermonde matrix, and thus, is guaranteed to be 

nonsingular (providing the r's making up the matrix are distinct). It follows that * 
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is nonsingular if and only if H is invertible; we have established an inexorable link 

between the two experimental approaches. 

Now we have a simpler form with which to deal in the proof of Conjecture 

2.4.2. If we prove the link between the rank of * and input order, then the same 

link is established between H and input order. Clearly, * is a simpler matrix to use 

in the proof. 

2.1   Invertibilityofty 

The previous section establishes the link between the summation approach 

and the ensemble approach. Now, we must prove the invertibility of the ensemble 

information matrix, *. 

Before considering the general case, we can establish the nonsingularity of 

* for special cases. If we assume the order of the plant under investigation is 

known, we can calculate the determinant of * for the proper number of exponential 

inputs. Equation (10) gives the time-domain representation of the true system under 

scrutiny. However, since we are dealing with steady-state excitation, it is more 

convenient to use the transfer function given by: 

*n(c-*i) 
G(O=-4?— (31) 

Il(C-ft) 
where the difference-equation parameters are absorbed in g, Zj, and pj.  In steady 

state, the system behaves as a complex gain. In other words 

«.•*='•?   =►   Vik = Airi (32) 

where 
n-l 

At=G(C)|c=r, = ^  (33) 

Ufa "ft) 
j=i 
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where ( is the forward shift operator and {ZJ} and {pj} are the poles and zeros of 

the transfer function, respectively. 

2.7.1    First Order Plant Example.      For a general first order plant, we have 

two unknowns, g and p\. 

G(0 = 
C-Pi 

From Equations (28) and (33) 

* = 
1 

Tl—Pl 

T2-VX 

We can easily compute the determinant of \P: 

1*1=3,      (r'"ri)      , (34) 
(ri -Pi){r2-Pi) 

So, M* is invertible if and only if g ^ 0 and r^ / r2. In other words, sufficient 

conditions for identifiability of the first-order system are second order input and a 

non-trivial system, as predicted by Conjectures 2.4.1 and 2.4.2. ■ 

2.7.2   Second Order Plant Case.      A general second order plant is described 

by four unknown parameters (g, z\, pi, and p2): 

an =     9^ ~Zl) 
lu    (C-ft)(C-ft) 

Again, Equations (28) and (33) give us 

* = 

l n 

1 r2 

1 r3 

1 r4 

-gjrt-zi) 
(n-pi)(n-P2) 

-fl(r2-zi) 
(i,a-pi)(r2-P2) 

-g{r3-zi) 
(r-3-Pl)(r3-P2) 

-g(ri-zi)     r 

(n-pi)(n-P2) 
-g(r2-zi) 

(r2-pi)(r2-P2) 
-9{r3-zi) 

(r3-pi)(r3-P2)   J 

-gJTj-zi) -g(rt-zi) 
(r4-Pl)(r4-P2)      (r4-Pl)(r<-P2)   4 
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The algebra involved in the computation of the determinant is cumbersome, so we 

present the explicit and elegant result, calculated by Mathematica [93]: 

I* 
„2 i (u - r3)(r4 - r2)(r4 - ri)(r3 - r2)(r3 - ri)(r2 - n)(pi - zx){p2 ~ *i)   ^ 

(ri ~ Pijin - P2){r2 - P\)(r2 - p2){r3 - Pi){r3 - p2)(r4 - Pi)(r4 - P2) 

2.7.2.1 Discussion of the Second Order Case: We see results similar 

to the first order case. Here * is nonsingular for r, ^ r, (i ^ j), g ^ 0, and 

no pole/zero cancellation. Thus, with these minimal restrictions on the plant, the 

identifiability of the parameters is determined by the order of the input; a second 

order plant requires a fourth order input for identifiability. 

2.7.3    Third Order Plant Case. Finally, we investigate the * regressor 

matrix for a general third order plant (with six unknown parameters). 

G(C) = 
g(C - *i)(C - *a) 

(C-PI)(C-P2)(C-PS) 

Again, by Equations (28) and (33) 

* = 

where 

Ai = 

1   r! rl   -A-, -Air! -Axr\ 

1   r2 A   -A2 -A2r2 -A2r\ 

1   r3 rl   -A3 -A3r3 -A3rl 

1   U r2
4   -A4 -A4r4 -A4r\ 

1   r6 rl   -A5 -A5r5 -A5rl 

1   r6 rl   -A6 -A6r6 -A6rl 

9{ri - zi)(ri - -2) 

(ri - pi)(r,- - p2){ri - p3) 
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Once again, the algebra involved is difficult. However, Mathematica [93] computes 

the determinant: 

(r6 ~ r5)(re - r4)(r6 - r3)(r6 - r2)(r6 - rx)x 

(rs - r4)(r5 - r3)(r5 - r2)(r5 - r^u - r3)x 

(r4 - r2)(r4 - n)(r3 - r2)(r3 - n){r2 - n)x 

.   (Pi - Zl){P2 ~ Zl){P3 ~ Zl){pi ~ Z2)(P2 ~ Z2)(p3 ~ Z2) 
1*1 = -93 (36) 

(ri -Pi)(ri - p2)(ri - Ps)(r2 - pi)(r2 - p2){r2 - p3)x 

(r3 - Pi)(r3 - p2)(r3 - p3)(r4 - pi)(r4 - p2)(r4 - Pa) x 

(r5 - Pi)(r5 - P2)(r5 - P3)(r6 - Pi)(r6 - p2)(r6 - J*) 

We see that the third order case continues the pattern. The determinant of 9 is 

zero if and only if the set of r's is not distinct, or the true plant has pole/zero can- 

cellations, or the plant is trivial (g = 0). Again, the identifiability of the parameters 

is determined by the input order. 

2.7.4    nth Order Plant.      The three special cases indicate a possible pattern 

for the determinant of ^, which we state as the following Conjecture: 

Conjecture 2.7.1 If the *P regressor matrix is constructed as outlined in this sec- 

tion, the determinant, \9\, is given by 

2n-l    2ra n n—1 

n Tite-vi) nn(K-*;) 
I      I        y 2n   n 

mi(*-ft) 
«=ij=i 

We leave this conjecture unproven. However, accepting its validity, we see in a very 

transparent way that an input of order 2n is necessary and sufficient for identification 

of the parameters describing an nth order plant with no pole/zero cancellations. 

Furthermore, the following discussion introduces an identification theorem which 

holds for any LTI plant. 
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2.8    Effect of Pole/Zero Cancellations 

The three important special cases investigated in Section 2.7, along with the 

generalization in Conjecture 2.7.1, indicate that identifiability of the parameters is 

partially dependent on the location of the poles and zeros of the transfer function. 

This dependence is stated as the following theorem: 

Theorem 2.8.1 Regardless of excitation, the regressor matrix H is invertible only if 

the model upon which H is based lacks pole/zero cancellations. That is, a necessary 

condition for identifiability is a minimum-order model. 

Proof: Consider the H matrix based on an nth order model. Then the columns of H 

consist of the past n inputs and the past n outputs (uk-i... Ufc-n and yk-i ■ ■. J/t-n)- 

Now, pole/zero cancellation effectively reduces the system order to something less 

than n. Thus, the last output (yk-i) can be expressed as a linear combination of 

t/fc-2 • • • yk-n and Ufc-i • • ■ Ufc-n, yielding a rank-deficient H matrix. ■ 

Since one of our basic assumptions is the lack of pole/zero cancellations in the 

plant, how do we encounter these cancellations? The answer lies in the chosen order 

of the model we wish to identify. For example, consider a second order true system. 

Expanding Equation (31) we have 

G(C) =      *lC+/2 (37) 

But, if the proposed model were third order, Equation (31) would yield 

6(0 = ,3SlC.2 + k.+/3- (38) 
C3 - axC2 - a2( - a3 

Now, for G = G V ( G C we require 63 = a3 = 0 which reduces Equation (38) to 

G7Q=      *»? + **     =      ^ + *2 (39) 

where the pole and zero at the origin are canceled.   This procedure is extended 

easily to plants of arbitrary order. Any proposed model of order greater than that of 
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the true system yields pole/zero cancellations at the origin. Hence, simple-minded 

over-modeling for determining the true order of the plant is not advised. 

2.9    Conclusions 

So far, we have explored some of the relationships linking input to identifiability 

of the parameters given perfect knowledge of the input and output. Several examples 

illustrate that the order of the input must be at least as great as the number of 

parameters to estimate. Furthermore, we maintain that this relationship between 

input order and identifiability extends to plants of arbitrary order. 

Now that we have gained these insights in a deterministic setting, we turn 

in Chapter III to a stochastic setting, wherein the measurements on the plant are 

corrupted by noise. Obviously, the deterministically derived identifiability conditions 

are necessary conditions for identifiability in the case with measurement noise. 
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III.   Stochastic Estimation 

Chapter II treats parameter estimation, given perfect knowledge of inputs and 

outputs (i.e. deterministic estimation, or modeling). Now, we complicate the prob- 

lem with the inevitable inclusion of measurement and process noise. That is, we now 

consider the problem of System Identification. 

The pertinent stochastic system model is given by the underlying dynamics 

n n n 

Vk = ~J2 «i2/fc-i + 2 bJuk-i + £ 9jWk-j (4°) 
j=i j=i j=i 

and the measurements 

Zk = Vk + vk (41) 

where y is an internal variable, u is a deterministic input, to is a realization of 

random process noise, and v is a realization of the random measurement noise. The 

respective process and measurement noise quantities, Wk and Vk, are independent 

white sequences with Gaussian distribution and statistics given by: 

£{*>k} = 0 

£{wjWjb} = crlSjk 

CM = 0 

£{vjV*} = trfok 

£{^^k} = 0 

►   Vj,fceZ (42) 

where 6jk is the Kronecker delta function. 

The importance for ID of the concise dynamic stochastic model given in Equa- 

tions (40) - (42) cannot be overemphasized. In particular, notice the difference 

between process noise and measurement noise and the correct modeling in Equa- 

tion 41) of the physical measurement process. A distinction is clearly drawn between 

the underlying ideal system state y and its available measurement z. We shall see 

that the scalar components making up the equation error vector associated with a 
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history of measurements are cross-correlated by the dynamics of the system. In con- 

trast, the process-noise terms in the equation error vector are cross-correlated with 

correlation terms affected only by the moving average coefficients (gj) defining the 

model for the process noise. Since the measurement-noise contribution to the cross- 

correlation terms involves the a,j terms (which are unknown), this causes significant 

complications for System Identification. 

Recalling Equation (15) in Chapter II we have 

yk = H&« (43) 

with one very important difference. Since we are dealing with noise corrupted data, 

we must use the measurements of the output; the y data is not directly available 

experimentally- this problem does not exist in the deterministic formulation. Thus, 

M 

where now 

r(?) w&e + nj? (?) (44) 

zk   — 

Zk 

Zk-\ 

Zk-(q-l) 

(45) 

H(«)   _ 

-Zk-l 

— Zk-q 

and 

0' = a\ 

— Zk-n Ufc-1 

—Zk-n-q+l)     Uk-q 

Uk-r 

Uk-n-q+1 

an   bi   :   bn 

(46) 

(47) 

and the vector njj.^ denotes the equation error, explained in the following sections. 

We shall see that n is not equal to a simple vectorization of ujt, due to correlation 
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induced by the dynamics of the system. Note also that the entries of H and z consist 

of the recorded measurements, rather than the "clean" signal y. 

Assuming q > 2n, the straight pseudo-inverse to calculate an estimate for the 

parameter vector is often employed [53], i.e., the Least Squares (LS) estimate is 

e H(,)  H(9) 
-l 

r(«) '» Hi'i *? (48) 

Thus, Equation (48) calculates the parameter estimates via an unweighted pseudo- 

inverse. 6 is referred to as the Least Squares estimate. However, the rigorous 

minimum-error-variance estimate is given by the minimum-variance estimate, which 

uses a properly weighted pseudo-inverse: 

8MV = H&R-'Ha _1 HU'R-^I" (49) 

It has been shown [79] that the R matrix in Equation (49) which minimizes the 

estimation error covariance is given by the covariance of the 'equation error.' Thus, 

we must first compute this covariance matrix. 

3.1    R With No Process Noise 

If we assume that we have no process noise, then R is only affected by the 

measurement noise, v. We may be tempted to think that R is simply a diagonal 

matrix with a* along the diagonal. In fact, some estimation schemes make this 

error. For example, the ARX command in the Matlab® ID toolbox is based on this 

assumption. However, using the ARX command for the ID of the dynamical system 

described in Equations (40) - (42), a practice often encountered, is erroneous. We 

will see that R is more complex than a simple diagonal matrix. 

We begin with an example. Consider a second-order system given by the 

dynamics 

Vk = -aiVk-i - a2yk-2 + huk-i + Mfc-2 (50) 
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and the measurements 

Zk = Vk + vk (51) 

Combining Equations (50) and (51), we have 

zk   =    -ax(zk-\ ~ Vfc-i) - 02(^-2 - vjfe-2) + Mfc-i + 62ujt-2 + ^ 

=   —aiZk-i - a2Zk-2 + biUk-i + huk-2 + Vk + aiVk-i + a2vk-2 (52) 

If we use a window length of q = 5, we have 

Zk 

Zk-l 

Zk-2 

Zk-Z 

Zk-4 

+ 

-Zk-l -Zk-2 Uk-1 Uk-2 

-Zk-2 —Zfc-3 Ufc-2 Wfc-3 

-Zk-3 -Zk-4 Uk-3 Uk-4 

-Zk-4 —Zk-5 Uk-4 Uk-h 

-Zk-5 —Zk-6 «k-5 "fc-6 

Vk + aiVk-1 + d2Vk-2 

Vk-1 + O-iVk-2 + a2Vk-3 

Vk-2 + aiVk-3 + a2ujb-4 

Vk-3 + O-lVk-4 + «2^-5 

Vk-4 + aiVk-5 + Ö2«fc-6 

ai 

02 

b2 

(53) 

or 

,(5) f(S) ,k   = H^0 + nfc 
(5) (54) 

where q = 5 is chosen arbitrarily for this example; note that q must be greater 

than or equal to four for four unknowns.  Furthermore, we note that the regressor 
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matrix, H, is populated entirely with measured quantities. Given the assumptions 

on v (Equation (42)), and Equations (53) and (54), we have 

R = 5{ „<«>„<'>'} = 
1 + a\ 4 a\     a\a,2 4 eti 

a\d2 4 CL\ 

02 

1 + a\ 4 a\     a\a2 4 a\ 

0 

<*2 

0-2 

0 

0 

a\ü2 + oi     1 4 a? + a\    a,\d2 4 a,\ 

a\ü2 4 a,\     I + a\-\- a\ 0.2 

0 a.2 

0 

0 

02 

a\ü2 + «i 

ai<i2 + öi     1 + a\ 4 «2 

(55) 

5.5   R W^i/i Process Noise 

Now, we further complicate the problem with the addition of process noise. 

The new system model is given by 

yk =  -aij/fc-i - 02^-2 4 Mfc 4 huk-i + giWk 4 g2Wk-\ 

Zk+i    =   2/fc+i + vk+i 

(56) 

(57) 

Isolating the autoregressive parameters, the moving average parameters, and the 

noise quantities, we have 

Zfc+i   =   -ai(zk - vk) - a2(zk-\ - ujb-i) 

+   biUk 4 b2Uk-i 

+   vk+i + 9\wk 4 g2Wk-l 

A little rearranging gives 

Zk+i   =   (-fli2fc - U2Zk-i 4- bxuk 4 Mfc-i) 

4-   (vjfc+i - aiffc - cwt-i) 

(58) 

(59) 
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Again, using a window length of q = 5: 

Zk 

Zk-\ 

Zk-2 

Zk-3 

Zk-4 

+ 

Zk-1 Zk-2 Uk-1 "fc-2 

Zk-2 Zk-3 Uk-2 Ufc-3 

Zk-3 Zk-4 Uk-3 Uk-4 

Zk-4 Zk-5 Uk-4 Uk-5 

Zks   Zk-e   Uk-5   uk-e 

Vk + aiVk-i + a2Vk-2 

Vk-i + aiVk-2 + a2Vk-3 

Vk-2 + aiVk-3 + a*2Vk-4 

Vk-3 + dlVk-4 + d2Vk-5 

Vk-4 + a.lVk-5 + Ö2^fc-6 

0.2 

bi 

b2 

+ 

giWk-1 + 02^-2 

giWk-2 + 92Wk-3 

giWk-3 + Q2Wk-4 

giwk-4 + g2wk-5 

giWk-5 +g2Wk-6 

or 

=   HJfJ.« + v<°' + <!, 

The R matrix must include both \[5' and w[_x terms: 

,(5) _L ™(6) 

R   = {Wn-ßOK'WÄ)'} 

where 

e {vi5Ms)'} = 
1 + a\ + a\ 
a\ü2 + öi 

Ö2 

0 

0 

Ü\Ü2 + CL\ 

1 + a\ + a\ 
a\ü2 + öi 

a2 

0 

a2 

ai02 + °i 

1 + oj + a\ 
a\ü2 + oi 

«2 

0 

02 

aia2 + öi 

1 + a\ + a\ 

ü\ü2 + ai 

0 

0 

Ö2 

ai02 + fli 

1 + a\ + a\ 

(60) 

(61) 

(62) 

(63) 
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anc 

*{«£>.«£,'} = 
' 9i+92 9i92 0 0 0 

9i92 9\+9\ 9\92 0 0 
0 9i92 9\+9l 9\92 0 
0 0 9\92 9\ + 9\ #102 

0 0 0 9\92 92i+i 
The matrices defining R are generalized to 

-{»<"»<"'} 

v0       v\     •••   i/n_i     vn      0      • • •       0 

v\        VQ      vi vn-i    '■■     '•■        : 

:        vx     ••■     ••• '•■     '••       0 

Vn-\ Vn-\ Vn 

Vn Vn-1 '■• '"• 
*   , 

Vn-1 

0 '•• '•. '*• 
*   . 

Vl • 

; •. •. 
Vn-1 V\ v0 Vl 

0 0 Vn Vn-\ Vl VQ 

(64) 

(65) 

'{wt9)w^'} = 

70 7l ••• 7n-2 7n-l 0 

71 70 7l 7n-2 '"• 

: 7i '•• '•• 

7n-2 ''• '"• 

7n-l 7n-2 "•• '•• "*• 

0 ■• •• •• '•• 

*•     7n-2 

0      7n-l     7n- 

71 

0 

7n-2     7n-l 

7n-2 

7i        : 

7o       7i 

7i       7o 

(66) 

where 

VQ = i + E«. 
i=i 

(67) 
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vi   =   at +  E aiai-ii   ^ = l,2,...,n (68) 

n 

7o E*2 (6Q) 
j=i 

It   =     E «#-*   '=l,2,...,n (70) 
j=M-i 

(71) 

We note that both matrices have some nice properties. They are symmetric and 

Toeplitz matrices [27]. Therefore, each qxq matrix is fully defined by a small number 

of parameters, reducing storage requirements. Furthermore, efficient algorithms exist 

for inverting such matrices [27]. We also see that the process noise terms of R do not 

experience the correlation induced by the dynamics of the plant. Any correlation in 

the process noise arises solely from the moving average terms which distribute this 

noise. 

3.3    Estimation Statistics 

The parameters to be estimated are embedded in a stochastic system. There- 

fore, we are concerned about the statistics of the estimate. Namely, we want to 

know if the estimates are biased and we wish to predict the estimation error co- 

variance. Under the assumptions of system-model linearity and Gaussian noise, the 

calculations required are straight-forward. However, even for a linear system, the 

parameter estimation problem is nonlinear, significantly complicating the statistics 

calculation problem. We can, however, linearize the problem in order to gain some 

insights about the error statistics. This linearization is accomplished by ignoring 

the random nature of the regressor matrix. Thus, the problem is reduced to a sim- 

ple linear regression through which we can calculate an estimate of the statistics of 

the estimation errors. Note that this process whereby we ignore the random nature 

of the R matrix is designed to give us a feeling for the error statistics associated 

with the weighted least squares estimate. Since R is actually populated with ran- 
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dorn quantities, the statistics calculations are actually much more complicated than 

presented here. 

Consider a linear estimation problem incorporating the abbreviated notation: 

y = ne 

z   =   y + n 

£{n}   =   0 

£{nri}   =   R 

with the minimum variance parameter vector estimate given by 

(72) 

9 H'R^H 
-l 

H'R^z (73) 

In order to determine the bias on the estimate, calculate the expected value of the 

estimation error, recognizing that y and 9 are deterministic quantities so £{9} = 9 

and £{y} = y: 

£{9-0} = ^»-[H'R^H] ^'R-^I 

sie- [H'R^HpH'R-^y + n)} 
=   fjö-JH'R'H]  'H'R'V- 

=   9- [H/R-1H]"1H'r1y 

H'R^H ^HR^n} 

-{'- H'R-'H H'R'HJ 19 
=   {1-1)0 = 0 (74) 

Thus, in the linear case, the estimate is unbiased. Now, we can compute the estima- 

tion error variance. Let the estimation error be given by e = 9 — 9. The estimation 

error covariance is computed by 

£{ee'} = eUe - 0) (e - e)'\ 

= £{99' -99' -99' + 99'} 

= £{99'} - £{0} 0'- 9£{9'} + 90' 

= £{00'} -00' (75) 
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Now, 

:{ee'} = e{( 
-{(JH'R-

1 

H'R^H 
-i 

H'R'z     z'R-'H ,1-D-ll H'R^H "')} 
H H'R-^y + w)) ((y + vVR^HfH'R^H]  *)} 

= f|QH'R-aH]  'H'R-^HÖ + v)) x 

(< 
HÖ + v/R-'H H'R'H 

H'R1!!     H'R-Xv )[0' + v'R"aH 
■ * 

= 00' + 0£[v'R^H [H'R
_1

H]  
a} + f{ H'R-'H 

H'R-^ 
-i 

[[H'R-
1
^ H'R1!!     H'R-1ww,R-1H 

1 
'R-H]-

1
} 

H'R_1v 

= öö'+fH'R-'H     H'R-^ivv'jR^H H'RXH 
-i 

H'R_1H H'R_1H 
-i 

= 00' + [H'R'H 

= 00'+ [H'R'H 

Finally, we combine Equations (75) and (76) to get 

£{ee'} = H'R-'H 
-l 

(76) 

(77) 

We must reiterate that the above calculations are rigorous if and only if the atten- 

dant estimation problem entails a linear regression, which it does not. Since we 

are estimating the parameters defining a dynamical system's model, the estimation 

problem in System ID is in fact nonlinear. 

3-4    Implementation 

Implementation of the batch system identification algorithm discussed in this 

chapter requires that we know the parameters which make up the equation error 

covariance matrix (R). However, if we know the parameters, then identification is 

not required. Therefore, we propose an iterative scheme in which the parameter 

estimates are fed back into the linear minimum variance algorithm, obviating the 

need for knowledge of the parameter values. 
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The feedback is seen in the equation relating the current parameter estimate 

with previous estimates. After slight modification, Equation (49) is rewritten 

0jfc+i = 
r(«)   'r>-lll(9) 

-1 
r(») '■»-!,(<> H& R^Hfi      Hg1 R^ (78) 

where R^ is a function of the previous parameter estimates. Clearly, Rj, is also a 

function of time since new parameter estimates are generated with each time step. 

R* = Vfc + rfc (79) 

with V and Tk given by Equation (65) and Equation (66), respectively. However, 

the i/'s are computed from the previous parameter estimate. This innovative idea, 

recursively calculating the weighting matrix, is used extensively throughout this 

research. Appendix A documents a concise algorithm which performs this recursion 

and generates parameter estimates. The measurement and process noise variances 

(cr\ and a^) can now be treated as tuning parameters. 

The algorithm implemented here assumes no process noise, which gives us the 

minimum variance weighting matrix as a symmetric, Toeplitz matrix (see Equa- 

tion (65)) built from the estimated parameters with a scalar multiple. Since the 

Minimum-Variance Weighted Least Squares parameter estimate requires the prod- 

uct of this weighting matrix and its inverse, the scalar measurement noise variance 

parameter cancels. Thus, in order to obtain the parameter estimate, we require no 

knowledge of av if we assume no process noise; this is a most pleasant aspect of the 

proposed System Identification approach. 

An estimate of the estimation error variance can also be obtained. Equation 

(77) is modified to reflect the time- varying R matrix: 

R9k = H'RrH 
-l 

(80) 

where Rgk is the estimate of £{ee'}. The diagonal elements of Rgk provide us with 

estimates of the estimation error variances (within a scalar multiple) for each of the 
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parameters. These quantities could be combined to gauge the Excitation Level, as 

described in Chapter I. 

Clearly, and despite of its linear appearance, this System Identification scheme 

is nonlinear. Thus, we cannot readily make broad statements about the stability of 

the algorithm. Also, the ability of the algorithm to capture the correct parameters 

when faced with poor initialization may be in question, as is always the case in 

nonlinear mathematics, where, e.g., convergence of iterative schemes is determined 

by a sufficiently close initial guess. Therefore, some experiments to motivate the use 

of the proposed ID algorithm are conducted and documented in the sequel. 

3.5    Experimental Results 

The importance of properly incorporating the weighting matrix in the ID can- 

not be seen readily from the previous discussion. Granted, we derived this Weighted 

Least Squares scheme specifically to reduce the parameter estimate covariance, viz., 

our estimate is a minimum- variance estimate; but how much effect do we see in 

practice? The answer is given by well-planned and careful experimentation. To this 

end, we present some experimental results which clearly demonstrate the benefits 

of proper weighting. In each of the experiments documented here, we excite the 

plant with white noise and corrupt the output measurements with another inde- 

pendent white noise sequence designed to produce a relatively low SNR of 20 dB. 

The Minimum-Variance Weighted Least Squares algorithm detailed in Appendix A 

is implemented in Matlab®. We employ this algorithm to generate parameter esti- 

mates for 1000 different batches of data, using the previously computed parameter 

estimates to build the weighting matrix. We also generate unweighted Least Squares 

estimates of the parameters from the same 1000 batches of data for comparison. 

The widely-used 'LS' command from the Matlab® System Identification Toolbox 

incorporates this unweighted Least Squares algorithm. 
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Table 1 Unweighted Least Squares estimate errors of the parameters defining a 
low-pass system with lightly damped poles.  

Coefficient Value Mean Error RMS Error RMS Error (%) 

Ol -1.537e+00 4.847e-01 5.327e-01 3.466e+01% 

02 9.025e-01 -4.295e-01 4.730e-01 5.241e+01% 

61 1.923e-01 -6.864e-03 1.604e-01 8.341e+01% 

62 1.731e-01 1.025e-01 1.902e-01 1.099e+02% 

Table 2 Weighted Least Squares estimate errors of the parameters defining a low- 
pass system with lightly damped poles.  

Coefficient Value Mean Error RMS Error RMS Error (%) 

Oi -1.537e+00 1.393e-02 4.216e-02 2.743e+00% 

02 9.025e-01 -1.120e-02 3.900e-02 4.321e+00% 

h 1.923e-01 -5.480e-03 8.260e-02 4.296e+01% 

62 1.731e-01 1.855e-02 9.705e-02 5.608e+01% 

3.5.1    Experiment 1. 

transfer function 

The first system we examine is described by the 

G(z) = 
b\z + b2 0.1923(2 + 0.9) (81) 

z2 + axz + a2      z
2- 1.537U + 0.9025 

which represents a low-pass system with a high-frequency zero and lightly damped 

poles: 

M2 = 0.95Z±f 

We present the results of the comparison in Tables 2 and 1. Clearly, the iter- 

atively weighted System ID scheme produces significantly smaller estimation errors. 

Mean errors (bias) and RMS errors drop markedly when the weighting is used prop- 

erly. However, we may still question the validity of either set of estimates. Also, 

the coefficients themselves are not what we typically concern ourselves with as con- 

trol system designers. Rather, the frequency response and pole/zero locations are 

often more germane to control system design. Therefore, we also present graphical 

comparisons relating pole/zero locations and frequency domain errors. 
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Poles in the Z-plane Poles in the Z-plane 

(a) Unweighted Least Squares (b) Weighted Least Squares 

Figure 6. Root Locations for Weighted and Unweighted Least Squares Estimates: 
The plant is low-pass with lightly damped poles, (a) shows the root lo- 
cations for all 1000 runs of the ID algorithm without proper weighting 
while (b) shows the pole locations for ID with weighting. The unit circle 
is superimposed for reference. 

First, Figures 6(a) and 6(b) show the root locations of the identified transfer 

functions' pole locations. Notice the significant spread of the roots in the Least 

Squares case relative to the tight grouping of poles in the weighted approach. 

Root location notwithstanding, we are concerned with the identified transfer 

functions' frequency responses. Figure 7 gives a good indication of the increase in 

accuracy we get from weighting the estimates. Properly weighting the estimates re- 

sults in much tighter worst-case envelopes and smaller RMS errors in both magnitude 

and phase Bode plots. Of particular interest are the low-frequency errors. Notice 

that the unweighted estimates exhibit significantly more error at low frequencies. 

This type of error is particularly distressing to the controls engineer, since most 

modern robust control system synthesis techniques require small plant uncertainty 

at lower frequencies and relegate the plant uncertainty to higher frequencies. Good 
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Reapcnie Envelopes RMponts Envelopei 

Nomilized Frequency 

(a) Weighted 

Nontidixed Frequency 

(b) Unweighted 

NomaliMd Frequency 

(c) Weighted 

NomMliicd Frequency 

(d) Unweighted 

Figure 7. Frequency Response Envelopes and Errors: The plant is low-pass with 
a pair of lightly damped poles; (a) shows the worst-case envelopes for 
the magnitude and phase frequency response curves when the transfer 
functions are identified via Weighted Least Squares, (b) gives these curves 
without the benefit of weighting. Note that the envelope plots include the 
nominal, largest, and smallest estimates for each frequency, (c) and (d) 
show the RMS errors in the responses for the weighted and unweighted 
identification, respectively. 

discussions of these error-distribution (i.e.   uncertainty distribution) requirements 

for robust control design are given by Doyle [17] and Ridgely [74]. 
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Table 3 Weighted Least Squares estimate errors of the parameters defining a low- 
pass system with all real poles. 

Coefficient Value Mean Error RMS Error RMS Error (%) 
ax -2.100e+00 1.088e-01 1.557e-01 7.414e+00% 

0.2 1.460e+00 -1.923e-01 2.796e-01 1.915e+01% 

03 -3.360e-01 8.663e-02 1.288e-01 3.833e+01% 

61 2.400e-02 3.471e-03 4.944e-03 2.060e+01% 

Table 4 Unweighted Least Squares estimate errors of the parameters defining a 
low-pass system with all real poles.  

Coefficient Value Mean Error RMS Error RMS Error (%) 

a\ -2.100e+00 1.366e+00 1.374e+00 6.543e+01% 
Ö2 1.460e+00 -1.665e+00 1.674e+00 1.147e+02% 
03 -3.360e-01 3.794e-01 3.980e-01 1.185e+02% 

61 2.400e-02 -1.815e-03 1.724e-02 7.184e+01% 

3.5.2   Experiment 2.      Our next experiment involves identification of a plant 

with all real poles. The transfer function is given by 

G(z) = 
0.00242 

(82) 
(z-0.6)(*-0.7)(z-0.8) 

We present the identification results for comparison in Tables 3 and 4. Once again, 

the Weighted Least Squares ID scheme yields significantly more accurate estimates 

of the parameters. 

However, the increase in accuracy is more striking in the root locations and the 

frequency response. Figure 8 shows the large amount of spread in the pole locations 

when ID is performed with no weighting. In particular, note that the poles are shifted 

into much higher frequencies, suggesting significant errors in the frequency response. 

Figure 9 confirms these suspicions; the worst-case envelopes and the RMS errors are 

significantly improved by weighting the estimates. In particular, we see that the 

weighted ID yields transfer functions with better-behaved low-frequency errors. The 

Weighted Least Squares ID produces low-frequency RMS errors around 1 dB, while 

the unweighted estimates exhibit very large low-frequency errors of about 20 dB. 
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Poles in the Z-plane POICB in the Z-plflne 

0.5 1 

(a) Unweighted Least Squares (b) Weighted Least Squares 

Figure 8. Root Locations for Weighted and Unweighted Least Squares Estimates: 
The plant is low-pass with all real poles, (a) shows the root locations for 
all 1000 runs of the ID algorithm without proper weighting while (b) shows 
the pole locations for ID with weighting. The unit circle is superimposed 
for reference. 

Thus, the transfer function estimates derived by standard Least Squares estimation 

are practically unusable as models for control system synthesis. 

3.5.3   Experiment 3.      As a final experiment, we consider a plant with lightly 

damped poles and zeros. The truth model transfer function is given by 

G(z)   = 
6xz

2 + h2z + fe3 

z4 + aiz3 + a2z
2 + a3z + a4 

0.2078z2 -0.3295z + 0.19957 
z4 - 3.0161z3 + 4.0683z2 - 2.8967z + 0.92237 

which represents a system with poles 

Pl,p2 = 0.98Z±^ 

p3,P4 = 0.98Z±f§ 

and zeros 

G,C2 = 0.98Z±f 
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Frequency Response Envelopes and Errors: The plant is low-pass with 
all real poles; (a) shows the worst-case envelopes for the magnitude and 
phase frequency response curves when the transfer functions are identified 
via Weighted Least Squares, (b) gives these curves without the benefit of 
weighting. Note that the envelope plots include the nominal, largest, and 
smallest estimates for each frequency, (c) and (d) show the RMS errors in 
the responses for the weighted and unweighted identification, respectively. 

This system is designed specifically to create a complex shape in the frequency 

domain and to illustrate the effect weighting has on the identified zeros. Tables 

5 and 6 document the accuracy of the parameter estimates for the weighted and 

unweighted least squares estimates, respectively. The pattern established in previ- 

ous experiments is continued here; the properly weighted estimates are markedly 
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Table 5 Weighted Least Squares estimate errors of the parameters defining a low- 
pass system with lightly damped poles and zeros.  

Coefficient Value Mean Error RMS Error RMS Error (%) 

a\ -3.016e+00 6.508e-03 1.542e-02 5.112e-01% 

a2 4.068e+00 -2.005e-02 4.125e-02 1.014e+00% 

0-3 -2.897e+00 2.277e-02 4.523e-02 1.562e+00% 
0,4 9.224e-01 -9.514e-03 1.859e-02 2.016e+00% 

61 2.078e-01 3.138e-03 2.237e-02 1.077e+01% 

b2 -3.295e-01 -8.006e-03 4.251e-02 1.290e+01% 

h 1.996e-01 5.748e-03 2.436e-02 1.221e+01% 

Table 6 Unweighted Least Squares estimate errors of the parameters defining a 
low-pass system with lightly damped poles and zeros.  

Coefficient Value Mean Error RMS Error RMS Error (%) 

öi -3.016e+00 2.079e+00 2.089e+00 6.925e+01% 

<*2 4.068e+00 -3.898e+00 3.904e+00 9.597e+01% 

03 -2.897e+00 3.135e+00 3.139e+00 1.084e+02% 
CL4 9.224e-01 -1.070e+00 1.078e+00 1.169e+02% 
br 2.078e-01 -9.171e-03 8.538e-02 4.109e+01% 

b2 -3.295e-01 4.395e-01 4.461e-01 1.354e+02% 

b3 1.996e-01 -2.006e-01 2.104e-01 1.054e+02% 

improved over the unweighted estimates. Furthermore, the accuracy of the root lo- 

cations (both poles and zeros) is greatly improved by weighting the estimates, as 

we see in Figure 10. We should expect to see a large improvement in the frequency 

response errors by weighting the estimates. Figure 11 confirms this expectation. 

The transfer functions' frequency response curves derived via unweighted parame- 

ter estimates hardly resemble the underlying plant's. In fact, Figure 11(b) shows 

that the envelope created by the largest and smallest estimated frequency responses 

does not even include the plant's response curve for some frequencies. In contrast, 

the frequency response envelope based on Minimum Variance/Weighted estimates is 

very tight. The RMS error curves further confirm the superiority of our Minimum 

Variance/Weighted Least Squares ID scheme. 
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Figure 10. Weighted and Unweighted Pole/Zero Locations: The plant has four 
lightly damped poles and two zeros very close to the unit circle, (a) 
and (b) show the weighted and unweighted estimated zero locations. The 
estimated pole locations are shown in (c) and (d). 

3.6    Conclusions 

In this chapter, we saw how the equation error in linear regression is affected 

by the dynamics of the system under test, resulting in a weighting matrix which 
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Figure 11. Frequency Response Envelopes and Errors: The plant has four lightly 
damped poles and two zeros very close to the unit circle, (a) shows the 
worst-case envelopes for the magnitude and phase frequency response 
curves when the transfer functions are identified via Weighted Least 
Squares, (b) gives these curves without the benefit of weighting. Note 
that the envelope plots include the nominal, largest, and smallest es- 
timates for each frequency, (c) and (d) show the RMS errors in the 
responses for the weighted and unweighted identification, respectively. 

is a function of the parameters under scrutiny. Although we do not have knowl- 

edge of the actual parameters defining the system, we proposed and experimentally 

tested a method by which the current estimates of the parameters are used itera- 

tively to construct this matrix. This also allows the algorithm to adapt to slowly 

changing/drifting parameters. Furthermore, in our analysis, we derived a candidate 

52 



estimate for the estimation error variances which may be used to gauge the Excita- 

tion Level. The experiments clearly show the advantage of properly weighting the 

parameter estimates. In fact, for the three plants used in this study, the widely-used 

(unweighted) Least Squares method was incapable of producing usable plant models 

when the SNR was as low as 20 dB. In contrast, the Minimum Variance/iteratively 

weighted algorithm developed here and outlined in Appendix A yielded plant models 

which closely reproduce the true plant in both root locations and frequency response. 

Having developed and tested an efficient ID algorithm, we are now faced with 

the question, "How can ID be enhanced by the inputs?" It stands to reason that an 

identification scheme's accuracy is limited by the quality of the raw data available 

to it. Therefore, since ID uses measurements of the inputs and outputs of the 

plant, we want these quantities to encode as much information as possible about the 

unknown parameters. In Chapter IV, we address this idea of 'information' and derive 

input power spectral density functions which maximize the parameter information 

contained in the input and output signals. 
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IV.   Information Theory and Optimal Input Shaping Filters 

4-1    Introduction 

System Identification (ID) consists of deriving, from knowledge of input signals 

applied to an unknown plant and measured, noise-corrupted plant output signals, 

an estimate of a vector of parameters which is used to form a mathematical model 

describing the behavior of the plant. The "plant" in question is a dynamical sys- 

tem. For example, the parameters might be the coefficients of a linear differential or 

difference equation. Alternatively, the ID algorithm may directly seek the locations 

of poles and zeros of a transfer function which describes a control system. A vast 

amount of work has been accomplished with an aim towards finding an optimal so- 

lution to the very basic problem of identifying the parameters of dynamical systems. 

For example, Äström and Eykhoff [4] present a good survey of the state-of-the-art 

(ca. 1971) in ID. A more current and widely-used reference is [42]. Scores of other 

sources exist which document the level of energy devoted to the field of System ID. 

Thus, the problem of identifying the unknown parameters of a dynamical system, 

though not completely solved, is a well-established field of research. Unfortunately, 

good solutions to the System ID problem have yet to be devised. Our work strives 

to contribute toward a practical solution of the System ID problem. 

However the solution to the ID problem is approached, the analyst often must 

accept the input/output data as it arrives. However, in some cases, the analyst 

might exercise control over the input signal. In these cases, some control over the 

excitation applied to the unknown plant should help enhance the performance of the 

ID algorithm, especially in the face of measurement and process noise. Surely, this 

idea is not original, as is evidenced by the literature. For example, Mehra [55, 56] 

presents several approaches for achieving optimal excitation, and Olmstead, in his 

Ph.D. dissertation [67], addresses the problem of ID within a feedback control loop. 

A common theme exists throughout the literature. Namely, the solution is closely 
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linked to the type of ID to be performed; thus, the input is designed to limit, or 

optimize (minimize), some metric applied to the estimation error of the ID algorithm. 

A new approach to the optimal input design problem for ID is proposed in 

this chapter. The concepts of information theory (traditionally a communications 

engineer's tool) and stochastic processes are exploited to maximize the 'information' 

content of the unknown plant's output. In this dissertation, the System ID process 

is being cast into a communications framework as follows. The message to be trans- 

mitted is the plant's data, i.e. the parameters defining the model of the plant. This 

message is encoded into the "transmitted" signal which consists of the plant's input 

and output measurements, the latter corrupted by measurement noise in the "com- 

munications channel." If the 'information' is properly encoded at the transmitter's 

end such that the signals under scrutiny by the ID algorithm at the receiver's end 

contain as much knowledge as possible about the unknown parameters, then the 

potential for successful ID will be enhanced. 

Thus, we present this approach to optimal inputs via maximizing 'information' 

in the following manner. First, in Section 4.2 we offer an overview of the pertinent 

information theory, concentrating on one particular definition of the term 'infor- 

mation.' Next, in Section 4.3 we address specific applications of this definition to 

stochastic processes, leading to optimal shaping filter design. We outline different 

approaches to the design of the optimal shaping filter, both for a deterministic plant 

and an unknown (or partially known) plant. Finally, we offer some conclusions in 

Section 4.6. 

4-2   Information Theory 

The term 'information' can mean many things to many people. In fact, as 

Cole [13] points out, 'information' can take on two dichotomous meanings. In some 

contexts, information is taken as the reduction of uncertainty about the received 

message.   Certainly, this definition is most intuitive if the receivers point of view 
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is taken. The receiver wishes to extract, with the least uncertainty, the message 

embedded within some (noise-corrupted) signal. However the case can also be made 

that information can be defined as an "increase in uncertainty." This latter definition 

makes most sense from a sender's perspective. If the sender of a message draws from 

a very rich set of messages to send, then each message sent contains a large amount 

of information. Conversely, if a sender is limited to a very small set of messages, 

then each message sent contains a small amount of information. Thus, consider the 

degenerate case in which the set of messages is a singleton; the sender can send only 

one message. Clearly, no information is imparted to the receiver, since the receiver 

knows the message with no ambiguity without even monitoring the signal! 

We are using concepts which are usually applied to communications theory; 

our aim is to apply information theoretic concepts to System Identification. A short 

glossary of information/communication theory nomenclature is included here in order 

to establish concisely the analogy between ID and communications. 

message The relevant facts encoded in the signal. In the System ID experi- 

ment design context, the message consists of the vector of plant param- 

eters (8). 

sender The designer of the encoding scheme. The sender does not know the 

signal sent. Rather, he knows some statistics about the signal to be sent 

and about most quantities involved, e.g., the communications channel. 

In our work, the sender is the input generator. 

signal The sequence of numbers actually arriving at the receiver. Our signal 

consists of inputs to the plant and measured plant outputs. Only the 

latter is sent through the communications channel, and is, therefore, 

noise corrupted. (In some applications, however, the input is also noise- 

corrupted.) 
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telegraphist The process by which the signal is sent. In our context, the 

telegraphist is the plant. We note that the telegraphist 'knows' the 

message. 

receiver The entity that receives the signal, and attempts to decode the mes- 

sage. Our receiver is the ID algorithm. 

Our goal is to provide the ID algorithm (e.g. our Minimum Variance/Weighted 

Least Squares algorithm) with as much information as possible concerning the un- 

known plant. Thus, the optimal input generator takes on the role of the sender of the 

message, motivating the latter definition for 'information.' We need now a rigorous 

mathematical definition for the terms 'information,' or 'uncertainty.' The following 

discussion, largely adopted from Papoulis' text [68] gives those required definitions. 

4.2.1 Entropy as a Measure of Information. The previous discussion mo- 

tivates and justifies the use of uncertainty as information for our application. Shan- 

non's classical work on communication [80] provides the definition for uncertainty 

(information) accepted throughout the communications field. Shannon's work de- 

fines uncertainty as entropy, a quantity applied to partitions of sets. As interpreted 

by Papoulis [68], the entropy associated with a partition (IK(Ql) of the set 21 with 

partitions A) is derived such that the following three postulates are satisfied: 

1. IK (21) is a continuous function of pi = P(Ai) (the probabilities assigned to each 

event in the partition). 

2. If p\ = pi = • • • = PN = jf, then IK(2l) is an increasing function of N. 

3. If a new partition, *8, is formed by subdividing one of the sets of 01, then 

ft(2l) > tt(<B). 

Shannon shows that the functional, Oi, is uniquely given by 

%{%) = -KYJPMPi) (83) 
1=1 
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where K > 0 is arbitrary and may be used to establish the units of measure. 

Setting K = 1 and adopting a subtle change of notation, Papoulis [68] defines 

entropy for a discrete random variable as follows: 

Definition 4.2.1 (Entropy of a discrete random variable)   The entropy asso- 

ciated with a discrete-valued random variable x, denoted IK(x), is given by 

N 

M(*) = -yLpMPi) 

where pi is the probability associated with each of the N possible realizations of x. 

Extending the notion of entropy of a discrete-valued random variable to a 

random variable with a continuous distribution is accomplished through limiting the 

summation in such as way as to achieve an integral in place of the summation. Again, 

the derivation is covered in Papoulis [68] and yields the following definition: 

Definition 4.2.2 (Entropy of a continuous random variable)  The entropy of 

a continuous random variable, x, denoted IK(x), is given by 

/oo 
px(x)\n(px(x))dx 

—oo 

where px(x) is the probability density function associated with the continuous random 

variable x. Also note the integral is taken over the region where px(x) ^ 0. 

Careful inspection of the previous definitions allows us to represent the entropy 

of either a continuous or discrete random variable via the use of the expectation 

operator: 

Definition 4.2.3 (Entropy as an expectation)  The entropy of a random vari- 

able, x, is given by 

W(x) = -5x{ln(px(x))} 

where p% is the probability density function associated with x and £{•} denotes the 

expectation operator. 
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Entropy as denned addresses the uncertainty in one random variable, but we 

are typically concerned with many quantities, usually arranged in a vector. Thus, 

we derive and define the entropy in a random vector (joint entropy) and the entropy 

in a random variable (or vector) conditioned on some other quantity (conditional 

entropy). Joint entropy is given by a simple extension of Definition 4.2.3: 

Definition 4.2.4 (Joint entropy) The joint entropy of a random vector, x, is 

given by 

W(x) = -£x{ln(/(x))} 

where /(x) is the probability density function associated with x. 

Finally, conditional entropy is the uncertainty of a random quantity given some 

knowledge about some other quantity. Since the quantities in question may be either 

scalars or vectors, we present the following definitions in vector notation, which may 

be specialized to the scalar case. 

Definition 4.2.5 (Conditional Entropy) The conditional entropy of a random 

vector, x given that a particular realization ofy has occurred, denoted by Ji(x\y), is 

given by 

W(x|y)   =   -£{ln(/(x|y)|y=y} 

=   -Jf(x\y)\n(f(x\y))dx 

Taking all possible realizations of y into account, the conditional entropy of x as- 

suming some unknown realization ofy is given by 

M(x|y) = e,m*\y)} 
=   j f(y)X(x\y)dy 

= -///(*» v) Hf(x\y))dxdy 
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4.2.2 Mutual Information. Entropy, taken as information about a quantity 

of interest, may not be a meaningful quantity in and of itself. Rather, we often 

desire a quantification of the improvement in information resulting from observations 

of related quantities. For example, this work addresses increasing the information 

about a set of unknown parameters contained in the inputs and outputs taken from a 

plant under test. This increase of information about one random variable contained 

in another variable leads us to the concept of mutual information, defined below: 

Definition 4.2.6 (Mutual Information)  The mutual information between two ran- 

dom vectors, denoted by J(x,y), is given by 

Z(x,y) = W(x) + W(y)-K(x,y) 

Applying the definitions for entropy and joint entropy, we see 

*"-+Äl (84) 
where /(x,y) is the joint probability density function of x and y.  Since f(x,y) = 

f(x\y)f(y) and using Definition 4.2.5, we have 

J(x,y)   =   W(x)-tt(x|y) (g5) 

= W(y)-W(y|x) 

Equation (85) shows how mutual information is construed as the information con- 

tained in one quantity about another. Let us assume we are concerned with infor- 

mation about y contained in x; then the second form of Equation (85) yields the 

amount of uncertainty in y less the uncertainty of y given that x has been observed. 

In other words, mutual information quantifies the reduction of uncertainty in y by 

observing x. Thus, if we can maximize J(x, y) by some choice of the statistics of x, 

that particular distribution for x is optimal in that it yields maximal information 

about the unknown variable, y. 
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J}.3   Stochastic Processes - Entropy Rate 

While information theory (specifically mutual information) can be exploited 

to help us determine the optimal inputs for ID, we are still faced with a possible 

'curse of dimensionality.' ID schemes use a history of data, not just the instanta- 

neous measurements of the current input and output. Thus, the sequences of input 

and output which appear in the equations describing entropy and mutual informa- 

tion would grow into very long vectors; in fact, steady-state analysis would require 

infinitely long vectors. 

A useful tool for reducing the data requirements is the concept of Entropy Rate, 

defined in the sequel. Entropy rate quantifies the average information per sample in 

a block of consecutive samples taken from a process. 

We can also reduce the data requirements through a transformation into the 

frequency domain. Our random vectors consist of input and output data which 

are interpreted as realizations of stochastic processes. Since our data are inher- 

ently discrete-time domain sequences, a natural candidate for transformation is the 

discrete-time Fourier transform (DTFT). Indeed, we shall see that the DTFT, de- 

noted 3"{-}, is a valuable tool to be used in the ensuing optimization (maximization) 

of the information contained in the measured signals. 

The statistics for a discrete-time random process are represented in terms of 

the joint probability density function f{x\, x2,..., xm) for the random variables Xi, 

x2,..., xm. The joint entropy for these m random variables 

!K(xi,x2,...,xm) = -£{m(/(xi,x2,...,xm))} (86) 

is known as the mth-order entropy of the discrete-time process Xfc, where Xfc = x(tk). 

We will assume that all processes are strict sense stationary (i.e. all statistics 

are independent of the choice of time origin). With stationarity in place, the mth- 

order entropy quantifies the uncertainty associated with any consecutive m samples 

from the process. 
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Consider a Markoff process, Xfc. Since this process is Markoff, we can write the 

joint probability density function for m consecutive variables in the sequence as a 

product of first order conditional densities 

f(xux2,...,xm) = f(xm\xm-1)---f(x2\xi)f(xi) (87) 

Applying the definitions for joint and conditional entropies (Definitions 4.2.4 and 

4.2.5) yields 

!K(xi,... ,xm) = !K(xm|xm_1) + • • • + K(x2\*i) + ft (x) (88) 

where !H(x) is the first order entropy for the process: 

ft(x) = ft(xfc) VfcGZ 

Invoking stationarity, we have 

Di(xi,... ,xm) = (m - 1)M(X!,X2) - (m - 2)tt(x) (89) 

for the Markoff process x. 

The next important concept involves the uncertainty about the present real- 

ization of a process when a portion of its past has been observed. 

Definition 4.3.1 (Conditional Entropy of Order m) The Conditional Entropy 

of Order m for a process Xfc is given by the entropy of the current state of the pro- 

cess under the assumption that the m most recent values have been observed. For 

example, 

-'l^Xrj|XTj_i, . . . ,Xn_mJ 

represents the conditional entropy of order m taken at time n. 

Now, since obtaining more information about the past of a process can only 

decrease the uncertainty about the current value of the process, we conclude that 

the rath order condition entropy is a decreasing function in ra [68]: 

ft(Xn|xn-l, ■ • • ,Xn_m) < !K(xn|xn_i,. . . ,Xn-(m-l)) (90) 
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Now, if the mth order conditional entropy is bounded below, it will tend to some 

limit, motivating the following definition: 

Definition 4.3.2 (Conditional Entropy of a Process)   The Conditional Entropy 

of a process X&, denoted by IKc(x) is given by 

JCCM = lim !K(xn x„_i,... ,xn_m) 
m—*oo 

and quantifies the measure of uncertainty about the present of the process assuming 

the entire past of the process has been observed. 

As a special case, consider a Markoff process, x. Here, 

rH^XnlXn-i, . . • ,X„_m) = ^XnlXn-i) (91) 

Since the process is stationary, we can arbitrarily set the time indices, yielding 

Mc(x) = M(x1,x2)-0{(x) (92) 

As we noted previously, we may be concerned with the average uncertainty per 

sample in a block of consecutive samples from a process. By considering this 'rate 

of entropy', we can quantify the information contained in an entire process history. 

Otherwise, the quantities involved would have to grow infinitely long. Thus, we 

make the following definition: 

Definition 4.3.3 (Entropy Rate) Entropy Rate of a process, denoted by9t(x), is 

the average information per sample for the entire history of the process: 

W(x) =  lim — ft(xi,...,xm) 
m-KX> m 

An important special case occurs when the process is Markoff. In this case, 

5{(x) = ^(xl5x2) - W(x) = ttc(x) (93) 

which follows from Equation (89) and the definition for entropy rate. Thus, we see 

that entropy rate for a Markoff process converges to the conditional rate. The next 

theorem shows that this limit holds in general. 
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Theorem 4.3.1  The entropy rate of a process, xn, equals the process's conditional 

entropy: 

5C(x) = Wc(x) 

Proof: Given a convergent sequence, ak, then the following holds: 

1     m 

ak -> a=> — J2ak -+ a (94) 

Now, xn is stationary, so (as in Equation (88)), the joint entropy for the process is 

expressed as 

m 

tt(xx,..., xro) = W(x) + Yl ^Klx"-i> • • ■ > x«-t) (95) 

Thus, 

:H(x)   =    lim —IK(xi,...,xm) 
m->oom 

1 1 /m \ 
=    lim —!K(x) + lim —   V] ft(xn |xn_x,..., xn_fc) m-*°°m m->oom   ^£-^ J 

Now, using the Definition 4.2.5 and Equation (94), we have the desired result. [68] 

■ 
As often is the case, the controls engineer is best served by transforming quan- 

tities of interest into the frequency domain. To this end, we derive entropy rate as a 

function of the power spectral density (PSD) of a signal of interest, viz., the entropy 

rate for a normal process is given by the following theorem. 

Theorem 4.3.2 Given a normal process, x, with the associated PSD function de- 

noted SXX,(UJ), the entropy rate associated with x is given by 

lK(x) = \ny/2ire + — r Sxx{u)du 
47T J-ir 

Proof: See Papoulis [68]. ■ 

64 



4-4    Discussion 

Up to this point, we have given a condensed presentation of pertinent infor- 

mation theory, with specific emphasis on the quantities of interest to this research. 

Namely, we now have a workable definition for information, and more important, 

we have a way to compute the information rate contained in a stochastic process. 

Furthermore, the computation of the information rate involves frequency domain 

quantities, allowing the control engineer the freedom to work within that mathe- 

matically convenient framework. These tools are used in the sequel to derive the 

optimal PSD of the input to a linear plant; optimal in the sense that information 

about unknown parameters is maximized. Obviously, the said parameters eventu- 

ally will be estimated by applying our specific System ID algorithm to the input and 

noise-corrupted outputs. 

4-5    Optimal Shaping Filters 

The previous sections provide us with a set of tools with which we can evaluate 

the information content of a signal. Thus, System Identification consists of processing 

input and output signals taken from a system in order to compute an estimate of 

the parameters defining the mathematical model representing the behavior of the 

plant under consideration. Thus, the information contained in these signals (input 

and output) has a strong bearing on the success of the ID algorithm in evaluating 

the unknown parameters. When the said information content is high, we speak of 

"good excitation." 

In the following sections, we investigate the types of input sequences which 

maximize the information content of the output of a plant, subject to constraints 

which make physical sense. The approach taken involves the use of shaping filters 

which, when driven by white noise, provide their output as the input to the unknown 

plant. First, we consider fully deterministic and known plants. Although perfect 

knowledge of the plant obviates the need for ID, we first consider fully known plants 
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Figure 12. Block Diagram for Open-Loop Identification 

in order to gain insight into the problem. Next, we apply these insights to the 

derivation of optimal shaping filters to be used in the identification of unknown 

plants. Of course, some prior information about the systems under test is required, 

such as the standard LTI assumptions, plant order, and a priori parameter statistics,. 

4-5.1    Information Theory Applied to System Identification. Before we 

attack the actual shaping filter design, we must interpret some of the concepts dis- 

cussed in the previous sections within the context of a System Identification thought 

experiment. Consider the block diagram presented in Figure 12. The plant is des- 

ignated by G, with the ID algorithm accepting inputs to G and noise-corrupted 

outputs from G. The measurement noise, v, is modeled as the output of H driven 

by w0. H is a shaping filter allowing the modeling of colored measurement noise 

and w0 is a unity-strength, normal, white process. Normally distributed noise with 

unity strength (wi) drives F, the shaping filter which conditions the inputs. Wi is 

statistically independent of w0. 

As the diagram shows, the identification uses two signals, namely u and z. The 

ID block uses these quantities to generate an estimate of the plant's parameters. In 

order to facilitate the best (in some sense of the word) estimates, we wish to maximize 

the information about G contained in the output. Although ID requires both input, 
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u, and output, z, the information content in z is germane since this is the signal which 

is modified by the plant under consideration. Furthermore, in this work, z is the 

only quantity subjected to the communications channel; that is, z is noise-corrupted. 

Thus, we are concerned with maximizing the mutual information about G 

contained in z. Recalling Definition 4.2.6 and Equation (85), our goal is to maximize 

J(z, G) where 

J(z,G) = M(z)-W(z|G) (96) 

Careful inspection of Equation (96) leads to a significant simplification. The 

conditional entropy term - 2C(z|G) - reduces to a constant, independent of the in- 

put. That is, if the plant and its input are known, then the freedom left in z is a 

function only of the measurement noise, v. Now, since the !K(z|G) term is indepen- 

dent of input, maximizing the mutual information via input design is equivalent to 

maximizing 9{(z). Also, in the ID experiment, the actually realized input is known. 

A complete discussion of this simplification is given by Riggins [75]. 

4.5.2 Assumptions. Before we can attack the actual shaping filter design, 

we must clarify the underlying assumptions concerning the plant and measurement 

noise. First, the plant is assumed stable, linear, and time-invariant. Thus, any 

steady-state output process resulting from a stationary input process will itself be 

stationary. Furthermore, while the plant may be non-minimum phase, we cannot 

allow any zeros of the plant's transfer function to lie directly on the unit circle in 

the Z-plane. Next, the measurement noise is assumed to be stationary, allowing this 

noise to be modeled as the steady-state output of a linear, time-invariant, and stable 

filter driven by white noise. 

4.5.3 Shaping Filter Design. With the goal of maximizing the mutual 

information between the plant and the output established, we proceed to discuss the 

shaping filter (see Figure 12).  System Identification of dynamical systems requires 

67 



using a history of input and output sequences. Thus, we must maximize the entropy 

of the output history. In other words, %(z) alluded to above involves a very long 

vector containing the output history. Since this history consists of the realizations 

of a process, it makes sense to consider entropy rate, described in Definition 4.3.3. 

Although our aim is to maximize the entropy in the measured output of the 

plant, we must accomplish this with some restraint; the mathematically formulated 

entropy maximization problem must make physical sense. Specifically, we shall con- 

sider three scenarios. First, we apply a hard constraint on the average output power 

of the plant. That is, y must be constrained to some finite variance (which equates to 

finite average power for a zero mean process). Otherwise, the optimal input would be 

unbounded, effectively increasing the SNR to infinity. Following similar reasoning, 

we derive the optimal filter for a limited average input power. Finally, we abandon 

hard constraints; rather, we apply negative weights to the input and output powers 

in the performance functional, thereby asking for maximum performance tempered 

with consideration for the excitation of the plant. 

4.5.3.1 Output Power Constraint. As stated previously, our first goal 

is to maximize the entropy of the measured output while constraining the output 

power. So, our problem is stated as a constrained optimization problem: 

maxtt(z) (97) 
F 

subject to 

Ky=]iml-±yl (98) 

where we recall that y is the output of the plant, while z refers to the measured out- 

put (including measurement noise). The performance functional to maximize and 

the constraint, given in Equations (97) and (98), are expressed in the time domain. 

Controls engineers are often comfortable working in the frequency domain. Further- 

more, both quantities require an infinitely long sequence of data, which makes the 
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frequency domain attractive. Hence, we easily transform both into the frequency do- 

main. First, the constraint (98) is expressed in terms of the PSD of the measurement 

sequence: 

1   n 1    fT 

lim - V Vk = 7T /   Syy(u)du (99) 

where we have assumed that y is a stationary, zero-mean process. Furthermore, 

Theorem 4.3.2 provides a means to move the performance functional (97) into the 

frequency domain: 

maxÖ^z) = max U/2^e + — J* In (Szz(w)) ^} (10°) 

Now, assuming that F and H are both LTI systems driven by Gaussian white noise 

with unity strength, we can express the performance functional in terms of the 

magnitudes of the transfer functions: 

M(z) = V2^+-^fjn (|F(u>)|2|G(u,)|2 + |HH|2) dw (101) 

Before attacking the optimization problem, let us examine the concavity of the 

performance functional. 

Lemma 4.5.1   The functional given in Equation (101) is concave with respect to 

\F{u)\. 

Proof: It is sufficient to show that 

In (|F(u,)|2|GH|2) = In (|F(ü,)|
2
) + In (|G(u;)|2) 

is concave. That is, we must show that 

ln{[a|FxM| + (1 - a)|F2(a;)|]2} > aln{|F1(a;)|2} + (1 - a)ln{|F2(u;)|2} 

Va 6(0,1) andVF1,F2eL2(-7r,7r) 
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Note that G does not contribute to the concavity. Now, employing the concavity of 

the natural log function: 

lnlMFaMI + a-aJlFaMI]2}   =   2In {o|F,(w)| + (1 - a)|F2(a;)|} 

>   2flln|Fi(w)| + 2(l-a)ln|F2(w)| 

=   olnjIFiMI^ + a-aJlnllFaMI8} 
■ 

We now can derive the optimal shaping filter for maximum information content. 

Since we are using an equality constraint, the problem of finding an extremum for 

the performance functional is solved via Lagrange multipliers. To reiterate, our goal 

is 

max -j- fT In (|F(o;)|2|G(u;)|2 + |H(w)|2) dw (102) 

subject to the output power constraint 

1    tT 

#out    =     g-y     Syy(uj)du> 

=   ^/_JFH|2|G(u,)|2<^ (103) 

where the performance functional (102) is simplified by ignoring the constant term, 

and the constraint equation is modified to use the magnitudes of the transfer func- 

tions. 

First, we form the augmented functional (using the optimization notation 

adopted from Kirk [38]): 

ga{u) = -Un{|F(o,)|2|G(u;)|2 + |H(u>)|2} - A^|F(u,)|2|G(u;)|2 (104) 

where A is the Lagrange multiplier. 
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Next, we set the variation (with respect to |F(a;)|) equal to zero: 

dga       _     1 2|F(u;)||G(u,)|2 ,1 ,„,..„,„,. .x.a 
d|F(w)| 47r|F(u;)|2|G(a;)|2 + |HH|2     XJF^\G^       ° 

=►   |F(u;)||G(u;)|2 [l - 2A (|F(a;)|2|G(a;)|2 + |H(u,)|2)] = 0 

Clearly, |F(u)| = 0 is not the solution which makes sense, so we ignore it. Substi- 

tuting the result of Equation (105) into Equation (103), we have 

= k-hLwX" (106) 

Solving for the Lagrange multiplier, we have 

k - K^ki>^ 
=   KM + <% (107) 

where <r2 is the variance of the measurement noise. 

The final solution is found by combining Equations (105) and (107): 

|FM|2 = i^yp [Kout + o* - |H(c)|2] (108) 

At this point, we can make use of Lemma 4.5.1. By this Lemma, the extremum 

(if it exists) is indeed a maximum. We address the possible situation in which the 

solution does not exist in the sequel. 

We can make some interesting observations about the optimal shaping filter 

by careful examination of Equation (108). First, the shape of the filter's frequency 

response is inversely proportional to the plant's. Thus, input energy is concentrated 

in frequencies for which the plant exhibits small gain. Furthermore, if the measure- 

ment noise is assumed to be colored, the filter tends to attenuate excitation in those 
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frequencies which exhibit high noise. That is, the filter does not 'waste' its energy 

budget in frequency bands where noise dominates. 

Inspection of Equation (108) also indicates a possible problem. We have not 

restricted the space from which |F| comes. Therefore, a non-judicious choice of the 

constraint constant Ko along with the assumed measurement noise model can result 

in a situation for which the solution does not exist. Specifically, if any frequency 

exists for which the noise PSD exceeds the sum of the noise variance and the limit 

on output variance, then the solution calls for an imaginary magnitude. An example 

situation in which this problem could exist is a noise model which includes a large, 

narrow spike in the frequency domain, such as would occur if the designer expects 

a relatively strong sinusoidal component in the measurement noise. Obviously, this 

type of situation is intractable given the method of solution used in this derivation. 

If the designer is adamant about these choices of the noise model and the constraint, 

more sophisticated constrained optimization methods must be employed. The avail- 

able methods of solution involve complicated and problem-specific choices. This type 

of situation is not further addressed by this research, other than to alert the reader 

that the possibility exists. 

Of course, there may be ad hoc methods for addressing the problem in which the 

above optimal solution does not exist. For example, if the optimal solution includes 

a small frequency band in which the input PSD is negative, we could approximate 

the curve by setting the PSD to zero (or near zero) for these frequencies. This type 

of suboptimal solution would result in an input which violates the constraint, but a 

simple gain adjustment could remedy this particular problem. 

In summary, we have derived an optimal solution by which information content 

in the measurements is maximized while conforming to a constraint on the plant's 

output power. 

While the output power is probably of primary interest (especially in an on- 

line application), we may also wish to restrict input power. Input power constraints 
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would be most applicable when the plant includes some inherent limitation on actu- 

ator power. The next section addresses the optimization under input constraints. 

4.5.3.2    Input Power Constraints. We now calculate the optimal 

shaping filter which maximizes output entropy while constraining the input power 

to some fixed value given by A'in. The performance functional is unchanged from 

Equation (101) but the constraint is modified to account for the input power to the 

plant. We state the optimization as: 

max-^- f ln(|F(a;)|2|G(W)|2 + |H(ü;)|2)^ (109) 
|F|   47T J—K       x ' 

subject to 

1    fn 

Kin   =    2W    ^"H^ 

=   ^- T |F(w)|adu; (110) 

The method of solution is similar to that used in the previous section. That 

is, we incorporate a Lagrange multiplier and set the total variation to zero, finding 

a necessary condition for an extremum. Again, by Lemma 4.5.1, if the extremum 

exists, it will be a maximum. Moving directly to the solution, we have 

IF(W)I =^n+^y_ff]GRp^-iG^)ii <m) 
This solution also exhibits some interesting properties. First, if the measure- 

ment noise is ignored (H(w) = 0), the shaping filter collapses to a constant. In other 

words, the maximum entropy at the output of the plant is achieved by white noise 

input (under input power constraint). This situation also occurs if we allow very 

large excitation (i.e. Km very large), allowing the filter to employ a large SNR. How- 

ever, if we account for measurement noise, the flavor of the optimal input changes 

markedly. For example, a simple white measurement noise model yields an input 

PSD which is somewhat attenuated in frequency intervals for which the plant has 

low gain and is amplified for those frequencies for which the plant exhibits high gain. 
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As is the case for the filter designed under output power constraint, this filter tends 

to allocate its energy in frequencies for which noise strength is low. However, in 

contrast to the previous solution, input power constraints allow the input to place 

energy in plant-high-gain frequencies. 

Unfortunately, this solution may not exist in an implementable form. If our 

models of the plant and the measurement noise interact such that |F(u>)|2 < 0 

for some frequency, viz., an infeasible solution results, then the choice of simple 

Lagrange multipliers must be abandoned for a more sophisticated constrained opti- 

mization technique which allows the imposition of hard (inequality) constraints, such 

as |F(UJ)|
2
 > 0. As is the case with the output power constrained case, we would 

be forced either to apply problem-specific approaches to the optimization involving 

duality theorems as covered by Luenberger [46], or apply suboptimal approximations 

to the optimal solution. 

4-5.3.3   Input and Output Power Penalties. Our previous two ap- 

proaches allow us to design an optimal shaping filter satisfying constraints on the 

input power with no regards to the output power and vice versa. If we are con- 

cerned with both quantities, we could employ simultaneous inequality constraints on 

both input and output power. However, inequality constraints will require solution 

methodologies which are, again, problem specific and make the posed optimization 

problem difficult. Hence, we are motivated to adopt a different approach in this 

case. Namely, in the spirit of Linear Quadratic Optimization, we form a new per- 

formance/cost functional which employs positive weighting to the information rate 

of the output while penalizing input and output power. The following functional is 

considered: 

J(|F|) = £[^ln(lFHI2lGHI2 + lHHI2)]^ 
-    I* Wv\F(u)\2\G(u;)\2dw - [* Wu\F{u)\2du> (112) 

J —7T J — W 
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where Wu and Wy > 0 are designer-chosen weights. Clearly, this functional reflects 

the aforementioned goals. The first term of the integrand is identified as the entropy 

contribution to the functional, while the second and third terms apply negative 

weight to the output and input powers, respectively. Furthermore, Lemma 4.5.2 

shows that this functional is concave with respect to |F|. 

Lemma 4.5.2 The functional given in Equation (112) is concave with respect to 

\F{u)\, providing the weights identified by Wu and Wy are non-negative. 

Proof: Lemma 4.5.1 yields concavity of the first term. The second and third terms 

are negatively weighted quadratic terms in |F|; thus they are concave. Now, a sum 

of concave functionals is concave, so the entire functional is concave. ■ 

Thus, an extremum (if one exists) represents a maximum of the functional. 

By construction, this optimization is unconstrained, obviating the need for 

Lagrange multipliers. Thus, we set the total variation (with respect to |F|) equal to 

zero: 

IFJ'W'HWI» " 2«>"G«"I2 - ™™ = °        <113> 
which yields the expression for the optimal shaping filter's magnitude: 

W(M2 l W2 (114) 

Once again, an implementable |F(w)| (> 0) may not ensue for certain choices 

of the weights and the measurement noise model. However, assuming a feasible 

solution exists, the interaction between the weights Wu,Wy, and the noise model is 

complicated and interesting. 

First, consider the situation in which very small weighting (penalty) is applied 

to the input and output power. In this case, the first term dominates, driving the 

shaping filter magnitude very high. Furthermore, the filter's magnitude indicates a 

tendency to attenuate the input energy within frequencies for which the plant has 
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Figure 13. Input and Output PSD resulting from the unconstrained optimal shaping 
filter designed to a low-pass plant with lightly damped poles and white 
measurement noise. 

high gain. In those frequencies for which |G(o>)| is low, the optimal input tends to 

look like high-variance white noise. 

Notice also, that if either weight is set to zero, the resulting solution adopts a 

form similar to those given in Equations (108) or (111). This is not unexpected since 

the method of Lagrange multipliers reduces a constrained optimization problem into 

an unconstrained form. 

Finally, consider the case in which both terms are active. For example, Figure 

13(a) illustrates the magnitude response for a plant with a set of lightly damped 

poles. The output is corrupted by white noise. With the weights set equal to each 

other, Figure 13(b) shows the optimal input PSD and the resulting output PSD. 

Notice how the optimal input is notched near the plant's resonant peak near the 

normalized frequency 0.3. We also note that the optimal input PSD drops off in 

high frequencies. Thus, the optimal filter behaves as the inverse of the plant where 

the plant has high gain. However, the filter's frequency response is shaped similarly 

to the plant's in the higher frequencies where the plant gain falls off.   Our next 
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Figure 14. Input and Output PSD resulting from the unconstrained optimal shaping 
filter designed to a low-pass plant with lightly damped poles and highly 
resonant measurement noise. 

experiment, illustrated in Figures 14(a) and 14(b), uses the same plant, but with a 

noise model incorporating a sharp, narrow peak. This type of noise model includes 

a sinusoidal component in the measurement noise. Figure 14(b) shows the same 

inverse-plant behavior, but with a notch near the resonant peak of the measurement 

model. Thus, the optimal input excludes excitation in the frequencies for which noise 

dominates. 

4.5.4 Output Power Constraint - Stochastic Formulation. The previous 

sections provide the derivations for the optimal input PSD given perfect knowledge 

of the plant. Although these preliminary formulations yielded useful insights into 

the problem, the practical engineer requires an optimal input for ID when faced 

with uncertain plants. At this point it is worth mentioning that our results should 

be applied in an iterative way; thus, the current plant estimate is used to design an 

optimal input to be applied to the plant, following which the ID algorithm is applied 

to the input/output pair and an improved plant estimate is obtained. Nevertheless, 

we shall see in the sequel that we can directly include plant uncertainty and arrive 
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at a solution for the optimal shaping filter by replacing every instance of the plant's 

square magnitude with the expected value of the same. We will concentrate on the 

output-power constraint formulation for two reasons. First, we are most concerned 

with limiting the plant's response to the probing input in an on-line application. 

Second, the development for the stochastic formulation of the input-power constraint 

and the unconstrained cases closely parallels the development offered here. 

Recalling Equations (102) and (103), our goal was 

max- 
F 

i-£ln(|F(u;)|2|GH|2 + |HH|2)^ 

subject to 

#out = ~ JjF(u)\2\G(u)\*dw 

Now that we are considering uncertain plants, we restate the problem with 

expected values. That is, our optimization problem now is 

max£fl{^ £ In (|FH|2|G(u;)|2 + |H(u>)|2) ^} (115) 

subject to the expected output power constraint 

tfout = £e{i£ |FH|2|G(u,)|2<L;} (116) 

In other words, we wish to maximize the expected entropy of the output subject to 

a constraint on the expected average output power. 

First consider the constraint, Equation (116). Expectation and integration are 

both linear operators, so we pass the expectation operator into the integral: 

#out = ^ £ |FM|25fl{|G(u;)|2} du (117) 

where we have made the tacit assumption that £e{|G(u>)|2} exists Vu> € [—7r,7r]; a 

discussion of the existence problem is given in Appendix B. 
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Similarly, we can pass the expectation operator into the integral in the perfor- 

mance functional, Equation (115). Furthermore, the log function is concave; i.e. 

log [5e{|FH|2G(u;)|2}] > &{log [|F(u;)|2G(u;)|2]} (118) 

With Equation (118) in mind, we pose the new optimization problem 

maxi- f In [|F(ü,)|25e{|G(u;)|2} + |H(u;)|2] du (119) 

subject to the constraint given in Equation (117), and assuming the existence of 

£e{|G(u>)|2}. Thus, we are maximizing an upper bound of the original performance 

functional given by Equation (115). 

The optimal shaping filter's magnitude for this stochastic formulation is derived 

in a manner identical to the development of Equation (108). We find that the filter 

which satisfies the stochastic formulation is described explicitly by 

|F(w)|2 = M^Mn[A'°"'+^"|HM|2] (120) 

Thus, the optimal input's PSD is completely described by the product of a term 

wholly dependent on the available plant prior information and a second term derived 

only from the known measurement noise model. 

4-5.5 Implementation Issues. Equations (108), (111), and (114) provide us 

with elegant expressions for the optimal shaping filter's magnitude squared. Since 

we began the derivation by assuming the filter is driven by unity-strength Gaussian 

white noise, these expressions are interpreted as the filter output's PSD. Aside from 

the feasibility problems already mentioned, we must be concerned with implement- 

ing the shaping filters as difference equations. A particular difficulty is caused by 

the negative sign which occurs in each filter's spectrum. Although not insurmount- 

able, this complication requires that we do some careful manipulation. In fact, we 

may be faced with the situation in which the input PSD cannot be realized with 

a finite dimensional filter.  Here, we would be forced to use a suboptimal approxi- 
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mation, such as a numerical fitting. This approximation could be accomplished via 

implementation of the modified Yule-Walker equations [21]. 

In particular, the optimal filter based on output power constraints should be 

considered for implementation. We are motivated to use this formulation for two 

reasons. First, the situation in which we wish to limit output power (and thus, 

response of the plant to excitation) is most appropriate for many applications. For 

example, if the excitation used for identification significantly affects flying qualities 

of an aircraft, then the signal is producing an output with too much output power. 

The form of the solution provides the second motivation for using the output power 

constraint formulation. That is, the solution is most amenable to on-line adaptivity. 

Recalling Equation (108): 

|F(o,)|2 = y^p [Kout + a\ - \H(u)\\ 

we see that the required PSD is implementable as the output of two cascaded filters 

driven by white noise. These two filters require magnitude responses equal to the 

plant's inverse and a function of the difference between a constant and the noise 

PSD. The first filter in line is easily given by a simple inversion of the plant's transfer 

function with enough delays added to make the inverted transfer function proper. 

The next filter can be implemented with a numerical solution. The beauty of this 

approach is that the numerically derived portion of the solution is a function only 

of the noise model; thus, it does not change as the plant estimate changes. So if we 

wish to adapt the input signal to reflect the latest estimate of the plant, we need 

only to invert the estimated transfer function of the plant. 

One particularly attractive implementation of optimally-colored input for Sys- 

tem ID is linked to Multiple Model Adaptive Estimation (MMAE) [53]. An MMAE 

estimator can be configured to generate a vector of probabilities, each assigned to 

one of a set of possible models. In other words, we take the parameter vector to be a 

discretely-distributed random vector. Each possible value for the parameter vector 
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yields a different model, so the MMAE selects the 'correct' model from a finite set. 

Now, each model in the set has associated with it an optimal input and a probability 

that the model matches the plant. Thus, we can use these probabilities to generate 

a weighted blend of the optimal inputs. Furthermore, as we note in Appendix B, 

the existence problem is obviated by the use of a discrete set of possible plants. 

The MMAE-like concept is illustrated in Figure 15. The primary components 

illustrated here are: 

• G is the plant under test. 

• H is the measurement noise coloring filter (typically a simple gain yielding 

white noise). 

• FH is part of the input-shaping filter. This filter is derived from the measure- 

ment noise model. 

• The ID block is MMAE with outputs pu ..., PM (i-e. the probabilities associ- 

ated with M different stipulated models.) 

• FI,...,FM are shaping filters associated with each of the hypothesized M 

models. 

• qx,..., q\j are weights to be applied to each shaping filter's output. 

• The algorithm block conditions the probabilities and produces values for the 

weights, qi,...,qM- 

• W0,WI,...,WM are independent random sequences, each of which is unity 

strength, white, and Gaussian. 

First, we derive FH from the second term of Equation (120): 

FHH=[^out + ^-|H(a;)|2] (121) 

where crl is the variance of the measurement noise, computed by 

°l = h /jHMi2dw 
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Figure 15. Implementation of the Optimally Colored Input in a MMAE Setting 
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Again, we are assuming that Wo is unity strength white Gaussian noise. As we noted 

previously, if we assume that the measurement noise is white, then FH collapses to 

a constant. However, if the measurement noise is colored, then the magnitude of 

FH takes on a more complex shape in the frequency domain. If necessary, we can 

design a filter with the proper shape (or arbitrarily close to the proper shape) via 

the use of many filter design packages. For example, the Matlab® Signal Processing 

Toolbox oifers the yulewalk command which incorporates the modified Yule-Walker 

equations. 

Now we need to generate the signal labeled u' such that its PSD is described 

by 5e{|G(u;)|2}- . The optimal solution here is to form a filter with a magnitude 

characteristic described by 

IFopu^Hl^^jIGHI2}]"^ 
M --1 

5>IG.-Mla 
.»=1 

(122) 

The expectation is taken over the finite number of models inherent to the MMAE 

approach, where p, is the probability that the zth model is correct. 

The expression given by Equation (122) presents some problems. First, we 

will not, in general, be able to realize a single filter with the specified magnitude 

characteristic. Next, if the filter is realizable, we still need to redesign each time the 

MMAE generates a new set of probabilities; this would require an undesirable level 

of computation in an on-line setting. 

Fortunately, an MMAE often selects one model by assigning a high probability 

to that model and very low probabilities to each of the other models [53]. If we 

assume that this will be the normal operation for the estimator, then the algorithm 

block becomes a simple selector, setting g, = 1 where the ith model is the most 

correct and qj = 0 for all other models. We also design each of the elemental shaping 

filters to have a magnitude characteristic equal to the inverse of the corresponding 

model. Thus, the input is switched to be optimal for the currently selected plant 

model. The switching between one input and another will introduce high frequency 
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transients into the input stream.  Hence, we might also wish to include a bank of 

filters in the algorithm block to smooth the transitions between inputs. 

Another approach for determining the weights qj is to allow the 'algorithm' 

block to simply pass the square root of the probabilities to the corresponding weight. 

That is, qj = y/pj for j = 1,..., M. Given this approach, the PSD of u' is 

Ww) = llöfe (123) 

This formulation is certainly suboptimal, but as any one probability approaches 

unity, the input PSD approaches the optimal. 

J^.6    Conclusions 

In this chapter, an area of information theory which is usually applied to com- 

munications is explored in the context of optimal experiment design for System ID. 

Extending an analogy between communications and identification experiments, we 

used entropy to quantify the level of information contained in output measurements. 

Although the term 'information' can take on dichotomous meanings, we saw that 

we can interpret the information content as a quantity to be maximized within the 

context of a System Identification experiment. Therefore, we adopted output en- 

tropy as an ID enhancement performance functional. Furthermore, entropy can be 

calculated using the power spectral density of a stationary signal, which lead us to 

maximizing the information in a plant's output via the use of optimal input shaping 

filters driven by unity-strength white noise. 

In order to limit the excitation of the plant, we formulated three different 

constrained optimization problems for the derivation of the optimal shaping filter. 

In all three formulations, our goal was to maximize output entropy while tempering 

the excitation with constraints or penalties. The formulations make physical sense 

and the ensuing optimal-input-generating filters are obtained. The first formulation 

involves a constraint on the plant's average output power.   Second, we optimize 



on information content, constrained by the plant's average input power.  Our final 

formulation employs penalties on both input and output power with no constraints. 

We first constrained output power and found that the optimal filter's magni- 

tude is proportional to the inverse of the plant multiplied by a term defined by the 

measurement noise model. If this model is white noise, then the noise-driven term 

in the shaping filter's magnitude becomes a constant. We saw that a colored mea- 

surement noise model yields a term in the shaping filter's magnitude which exhibits 

some attenuation of the input in frequencies wherein the noise is high. That is, 

the optimal filter concentrates more input energy in those frequencies of low noise, 

avoiding the 'waste' of energy within frequencies where noise might dominate. 

Next, we applied a constraint to the average power applied to the input of the 

plant while maximizing the entropy of the output. We observed that this optimal 

filter becomes a constant (applying white noise to the input of the plant) when the 

measurement noise is very small. However, assuming a significant level of measure- 

ment noise yields an optimal shaping filter with a more interesting shape. As we 

saw in the output power constraint case, the optimal filter tends to attenuate the 

input in those frequencies in which the measurement noise is high and amplify input 

in frequencies of lower noise. In contrast to the filter designed under output power 

constraint, this filter's shape tracks the plant's magnitude, amplifying the input in 

frequencies for which the plant has higher gain. 

As a third alternative, we explored an unconstrained formulation of the opti- 

mization problem whereby the performance functional includes positive weight on 

the output entropy while penalizing the plant's input and output power. This ap- 

proach yields a shaping filter with a complex and interesting shape. We saw that 

setting the penalties on the input and output power very small results in a filter which 

approaches the inverse of the plant in magnitude with a large gain, thus forcing the 

plant's output to look like very high strength white noise. As we expected, if either 

penalty is set to zero, the optimal shaping filter takes on a magnitude characteristic 

85 



similar to one of the constrained formulations. Most interesting, if both penalties 

are significant, the optimal shaping filter looks like a blend of the two filters derived 

under constraints. We saw that this filter tends to notch out frequencies for which 

the plant exhibits very high gain, but tends to roll off in magnitude for frequencies 

for which the plant's magnitude drops. Thus, the unconstrained filter is shaped as 

the inverse of the plant near plant-resonance frequencies and takes a shape similar 

to the plant's magnitude response where the plant's magnitude rolls off. 

While each of the three previously discussed optimal filters is based on a deter- 

ministic plant model, our fourth formulation includes plant uncertainty. We included 

uncertainty in the plant's parameters by optimizing on the expected value of the out- 

put entropy bound while constraining the expected average plant output power. The 

optimal shaping filter which results has a form similar to the deterministic case, but 

with the plant's squared magnitude replaced by the expected value of the squared 

magnitude. 

Finally, we looked at implementation issues. The optimal inputs derived here 

are described by the input's optimal power spectral density which is not always 

achievable via the use of realizable filters driven by white noise. We can, however, 

approximate the required PSD with filters designed to fit the required spectrum 

through the use of numerical filter-design algorithms. Furthermore, we saw that the 

inputs derived for uncertain plants can be realized sub-optimally by a set of filters 

running in parallel and cascaded through another filter. The latter filter is described 

completely by the measurement-noise model while the former requires knowledge of 

the current estimate of the plant. This allows us to design the noise-driven filter 

a priori with no knowledge about the plant. The outputs of the parallel filters are 

blended through a series of adaptive gain elements, each gain determined by a set of 

probabilities taken from a Multiple Model Adaptive Estimator. This approach will 

be investigated fully in future research. 
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With the theory defining optimal inputs for identification in place, we move 

to experimental results in Chapter V. As practical engineers, we wish to see the 

advantage in using the optimally colored inputs described in this chapter. That is, 

although we have designed entropy (information) maximizing inputs, we wish to ob- 

serve how this maximum information is manifested in the reduction of the estimated 

parameter errors when an efficient System ID algorithm is employed. Furthermore, 

we will see experiments which corroborate the theory presented here. 
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V.   Experiments 

In Chapter II the theory relating the order of the input to the identifiability 

of the parameters defining the math model of a plant was developed. Chapter III 

addressed the development of efficient identification algorithms in the presence of 

measurement and process noise. An algorithm for accomplishing Minimum Vari- 

ance/Iterated Weighted Least Squares identification which dramatically outperforms 

standard Least Squares estimation was developed and tested. In Chapter IV the cal- 

culation of the input frequency spectrum which optimizes the information content 

of the input/output maximizing the potential for successful ID was addressed. In 

this chapter, experiments which are designed specifically to provide evidence to in- 

vestigate the utility of some of the theory presented in Chapter IV are performed. 

We will collect this evidence by examining the effects different inputs have on ID 

performance, when the ID algorithm referred to above is used. 

This chapter is organized into four main sections. Section 5.1 presents a short 

discussion on various metrics which are used to quantify successful parameter iden- 

tification. In Section 5.2 several experiments through which we draw some con- 

clusions about frequency-domain concentration for the excitation are performed. 

Section 5.2.1 documents an experiment through which we apply inputs consisting 

entirely of sinusoids of varying frequencies and observe some widely used ID met- 

rics. Sections 5.2.2 and 5.2.3 present the results of experiments which investigate 

the use of various shaping filters to color the input. Next, Section 5.3 documents the 

results of some parameter estimation experiments. Finally, Section 5.4 continues a 

discussion of the experimental results. 

5.1    Identification Metrics 

We wish to explore the relationship between different types of inputs and the 

identifiability of the parameters defining a dynamical system. Therefore, we need 
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a good metric which quantifies the potential for identifiability. The available liter- 

ature offers several metrics which accomplish this goal by reflecting the parameter 

estimation error covariance into a scalar; for example see [28, 32, 44, 55, 96]. Under 

some non-restrictive assumptions on the plant, and assuming an unbiased estimator 

is available - which, unfortunately, is seldom the case except when ARX models are 

used - the Fisher Information Matrix M provides us with the inverse of the parame- 

ter estimate error covariance matrix. Thus, the following metrics all involve the use 

of M [32]: 

• A-optimality: J^(M_1) = trace(AM *),   A > 0 

• D-optimality: JD(M
_1

) = det(M_1) 

• E-optimality: JB(M
_1

) = Amax(M"1) (i.e. the maximum eigenvalue) 

• C-optimality: Jc(M_1) = cond(M_1) 

Each of these criteria is minimized for optimality. 

JA is attractive since it is easy to compute and we easily can see the link be- 

tween A-optimality and the minimization of the estimation error variance. Further- 

more, the choice of A provides a transparent way to place more or less importance 

on particular elements in the unknown parameter vector. C-optimality is applied 

to increase the convergence rate of the gradient algorithm. Furthermore, recalling 

Equation (49): 

OMV = HW'R-^W 
-1 

r(«) 'u-U«) 

we see that we require a matrix inversion for Weighted Least Squares parameter 

estimation. We wish for this matrix to be as far from singular as possible, thus 

minimizing the sensitivity to errors (noise) in the solution vector. As Maybeck [53] 

points out, this matrix product is recognized as one form of the Fisher Information 

Matrix. Now, the condition number of a matrix serves to quantify the sensitivity 

to noise in the solution vector zjj.'* (i.e. the 'singularity' of the matrix), so we are 

motivated to minimize the condition of the Information Matrix. 
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We might also think of the determinant (used in D-optimality) as measure of 

the 'singularity' of the matrix. After all, a singular matrix's determinant is zero. 

Thus, we might be tempted to maximize the determinant of the Information Matrix. 

However, a large determinant does not imply a small condition number. Thus, 

we maintain that maximizing the determinant of the Information Matrix does not 

necessarily ensure a well-conditioned ID problem. 

As Herrera-Bendezu [32] points out, minimization of the JE functional leads to 

minimizing the maximum radius of the ID error ellipsoid. This makes E-optimality 

appealing, but it has not received much attention in the literature because there 

is not an analytic expression for the eigenvalues of a general matrix. Furthermore, 

we can monitor the anticipated error by observing the trace of the error covariance 

matrix (M_1). 

We are concerned with minimizing the estimation error committed by the ID 

algorithm in the presence of measurement noise. To this end, we will focus on C- 

optimality and A-optimality (with A fixed as the identity matrix, applying equal 

weight to all parameter variances). We choose to monitor the condition number 

since it quantifies the sensitivity of the ID algorithm to noise. Furthermore, we will 

observe the trace of the error covariance matrix as a direct reflection of the spread 

of the errors in the parameter estimates. 

5.2    Input Frequency Concentration 

The experiments documented here are designed to address the effects of fre- 

quency content of the input. First, we consider inputs comprised of sinusoids re- 

stricted within different frequency bands. Next, we use the outputs of several band- 

pass filters driven by white noise as the input. Finally, we replace the bandpass filters 

with bandstop filters. In each case, we run the experiment for several locations of 

the bands, allowing us to compute the ID metrics as a function of the location of 

the band. A more detailed description of the experiments is provided in the sequel. 
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Figure 16. Bode Plots: This system has a pair of lightly-damped poles and a pair 
of zeros near the unit circle, producing a resonant peak and an anti- 
resonant dip. 

The plant which serves as a truth model for these experiments is not rooted 

in reality. Rather, the plant is designed to focus our attention on portions of the 

frequency domain in which the plant exhibits high gain plus those frequencies of 

low magnitude. That is, the plant's magnitude characteristic includes a sharp reso- 

nant peak and a sharp anti-resonant dip, as illustrated by the Bode plots shown in 

Figure 16. The truth-model transfer function is 

bxz
2 + b2z + b3 0.14323z2 - 0.081442z + 0.12123 

G^) ~ z3 + aiz
2 + a2z + a3~ z3- 0.96407z2 - 0.71726z + 0.86436 

which has three poles: -0.9,0.98Z±0.l7r and two zeros: 0.92Z±0.47r. In particular, 

notice that the plant's magnitude response does not exhibit high-frequency rolloff. 

This is not a realistic situation.   However, a more realistic plant model is used in 

experiments documented in following sections of this chapter. 

5.2.1 Sinusoidal Inputs. Chapter II presented a transparent way to relate 

the order of excitation to the model order. We saw that identification of a plant 

with n unknowns requires an input of at least order n. For example, a second-order 
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plant (with four unknown parameters) must be excited by an input consisting of 

linear combinations of at least two sinusoids, i.e., of order four, for identification. 

Although we know the minimum number of sinusoids required for identification, we 

have not addressed the best placement (in frequency) of these sinusoids. 

In order to investigate the effects of the placement of sinusoidal inputs on ID 

performance, we conduct the following experiment. A truth-model is excited by an 

input consisting of a sum of sinusoidal signals, with the magnitudes of the sinusoids 

chosen to achieve an average output power equal to one. Hence, we are considering 

the case of constrained output power. (Unity output power is chosen arbitrarily.) 

The group of sinusoids is grouped tightly around a center frequency. We then build 

a regressor matrix from the inputs and steady-state outputs. This regressor is then 

used in calculating the ID-performance metrics. Namely, we consider the condition 

number of the Information Matrix and the trace of the estimation error covariance 

matrix. 

We determine the best placement of the input in the frequency domain by 

sweeping the center frequency through the entire allowable range of frequencies. 

That is, the entire band of frequencies making up the input must lie in (0,1) in 

Normalized Frequency Units (NFU), where all frequencies are normalized such that 

unity represents the Nyquist or folding frequency. We calculate and store the metrics 

corresponding to each center frequency and plot the results. 

Figure 17 should help to illustrate the methodology used in this experiment. 

Each hatched region in this figure represents a band in which the input frequencies 

lie; the input is taken as a sum of sinusoids having these frequencies. This input is 

then applied to the plant and the resulting input/output pair is used to construct 

a regressor. We then calculate and store the desired metrics from the regressor. 

Having completed this phase of the experiment, we move to the next band and re- 

accomplish the procedure. Note that the bands illustrated in Figure 17 are designed 
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Figure 17. Excitation Bands: The hatched areas illustrate the bands of frequency 
in which excitation is concentrated (or attenuated). For the sinusoidal- 
input experiments, each run of each experiment uses sinusoids with fre- 
quencies contained in each of the bands. The bandpass experiments use 
filters whose ideal magnitude characteristics are illustrated by each of 
the n bands. In the case of notch (or bandstop) filter experiments, the 
hatched areas represent the ideal stop-band magnitude characteristic. 

to overlap, allowing the center band-center frequencies (denoted u>i, u>2, ...) to be 

arbitrarily close. 

For this experiment, we set the width of each band to 0.05 NFU. We wish the 

band to be narrow in order to isolate a small region of frequencies, but not so nar- 

row as to induce numerical difficulties in distinguishing frequencies within the band. 

Hence, our choice of bandwidth is arbitrary, but not without consideration. For each 

center frequency, we apply an input consisting of a sum of twenty sinusoids equally 

spaced within the band identified by its center. As we saw in Chapter II, this system 

with six unknown parameters requires an excitation consisting of at least three sinu- 

soids. This, however, is a minimum. We wish to use a large number of frequencies 

to mitigate the so-called 'picket-fence effect' [83] by which important information is 

missed between the frequencies sampled by the sinusoidal input components. Once 
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again, possible numerical problems motivate us to keep the number of frequencies 

relatively small. Therefore, we settle on twenty sinusoids as a compromise. 

The results of this experiment are shown in Figures 18 and 19. Figure 18(a) 

illustrates the condition number of the Information Matrix versus the input's center 

frequency. Figure 18(b) shows the plant's magnitude response curve with a shaded 

area superimposed indicating the input frequency band which yields the best (min- 

imum) condition number. We see that the condition number is minimized by an 

input centered near the anti-resonant frequency (0.4 NFU). Thus, if the condition 

number of the Information Matrix is our metric of choice, this experiment suggests 

that we should excite the plant with inputs consisting of frequencies near a minimum 

in the plant's magnitude curve. Next, the trace of the estimation error covariance 

matrix (Figures 19(a) and (b)) clearly indicate that the sum of the error variances 

is minimized if the input is concentrated around the dip in the plant's frequency 

response. 

This experiment tends to support one conclusion drawn in Chapter IV. When 

faced with output power constraints and white measurement noise, Equation (108) 

shows that the optimal input spectrum is shaped as the inverse of the plant. Thus, 

the optimal shaping filter tends to accentuate input frequencies near which the plant's 

magnitude is attenuated. Although this experiment's input sequence consisting of a 

sum of sinusoids is quite different from the sequence taken as the output of a shaping 

filter, we are encouraged by the agreement between the two approaches. That is, the 

optimal input frequency spectrum derived from maximizing entropy and the 'best' 

placement of sinusoids observed in this experiment both lead us to concentrate input 

energy in the same frequencies. 

5.2.2 Bandpass Filters as Input Shaping Filters. The previous section gives 

us some agreement between the optimal shaping filter derived in Chapter IV and 

the best frequencies for sinusoidal inputs. Since this research is focused on finding 
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Figure 18. Information Matrix Condition Number: (a) shows the condition number 
versus the center of the band of sinusoidal input, (b) shows the plant's 
magnitude response with the band of input frequencies which yields the 
best condition number. 
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(b) Sinusoidal Band Yielding the Best Trace 

Figure 19. Error Covariance Matrix Trace: (a) shows the trace of the error covari- 
ance matrix versus the center of the band of sinusoidal input, (b) shows 
the plant's magnitude response with the band of input frequencies which 
yields the best error covariance matrix trace. 
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filters to be used to shape the input sequence, our next logical set of experiments 

involve the use of some sort of filter driven by white noise. 

A bandpass input shaping filter is a good choice for our next experiment. 

Since a narrow bandpass filter can isolate a small set of frequencies, we can use 

several bandpass filters with different center frequencies to parallel the experiment 

we discussed in Section 5.2.1. As before, we wish to find the answer to the question: 

"What frequencies should be accentuated for optimal identification performance?" 

We attempt to form an answer by constructing input sequences as the outputs of 

different bandpass filters, forming estimates of the ID performance metrics. 

The strategy employed for these experiments is similar to that used for the 

sinusoidal inputs. We form a bandpass filter with a specified pass-band center and 

bandwidth. The filter is excited with white noise and the resulting output is fed 

to the plant as input, after applying a gain to yield a predetermined average power 

on the output of the plant. We then use the plant's input and output sequences to 

build a regressor and calculate the ID performance metrics. Since we are dealing with 

pseudo-random sequences, we conduct the same experiment many times in a Monte 

Carlo fashion, averaging the calculated metrics over the number of experiments. 

After the desired quantities are stored, we move the center of the bandpass filter and 

begin the process over. 

Again, Figure 17 helps to clarify this procedure. Each hatched region in this 

figure represents the ideal filter magnitude characteristic for one phase of this exper- 

iment. For example, we begin by designing a filter with a specified bandwidth and 

center frequency of LO\ . This filter is used to shape the input sequence. The result- 

ing plant output and the filter's output are then used to construct the Information 

Matrix from which we calculate the metrics. We perform this procedure many times 

and store the mean of the metrics. We then move the filter's center frequency to u>2 

and re-accomplish another Monte Carlo set for the new input filter. 
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Figure 20. Magnitude Characteristic for a Typical Bandpass Filter 

In order to facilitate easy comparisons, we use the same truth-model that we 

used for the sinusoidal experiment. This plant's Bode magnitude and phase plots 

can be seen in Figure 16. Each filter used in this experiment is an eighth-order 

Butterworth bandpass filter with a 3 dB bandwidth of 0.05 NFU. Our rationale for 

choosing this bandwidth is similar to that used in choosing the bandwidth in the 

sinusoidal experiment. We wish to isolate a small region of frequencies, but the 

bandwidth cannot be too small without incurring numerical difficulties. A typical 

bandpass filter's magnitude characteristic is shown in Figure 20. 

In order to create a smooth plot, we quantize the frequency domain into 200 

different band-center frequencies. Each filter is used in a Monte Carlo simulation 

consisting of 500 runs. Thus, we perform a total of 100,000 runs. Furthermore, each 

run consists of exciting the plant with a very long input sequence (10,000 points in 

time), from which we extract the Information Matrix based on a regressor matrix of 

length q = 80. We choose 10,000 points as an arbitrarily large time, allowing any 

transients to die out. The length of the regressor matrix (80 samples) represents a 

compromise between computation time and smoothness of the resulting plots. 
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We see the results of this experiment in Figures 21 and 22. Figure 21(a) shows 

the mean of the Information Matrix condition number versus the bandpass center 

frequency. The condition number is minimized by inputs with energy concentrated 

near the dip in the plant's magnitude response curve. Figure 21(b) shows the plant's 

magnitude versus frequency curve with the 'best' bandpass magnitude superimposed. 

Note that both curves are gain-modified so they can appear on the same plot for 

comparison. This figure clearly shows that the 'best' input (of the 200 tested) is band- 

limited to capture the plant's anti-resonant dip. Thus, input energy is concentrated 

most effectively in frequencies near those frequencies for which the plant attenuates 

the input. Figures 22(a) and (b) illustrate this point more strongly. These figures 

represent the trace of the error covariance matrix versus pass-band center frequency. 

As the curves show, minimizing this trace requires input energy centered on the dip 

in the plant's magnitude. Thus, this experiment also supports using inputs colored 

as the inverse of the plant as optimal. 

5.2.3 Notch Filters as Input Shaping Filters. The previous experiments 

allowed us to investigate optimal frequency- domain placement of input energy for 

the enhancement of ID performance. The experiments covered in this section are 

also concerned with the concentration of input energy, but here we attempt to infer 

the best place to exclude input energy. We accomplish this in a manner similar to 

that covered in Section 5.2.2. However, now the shaping filter is constructed as a 

notch filter, or an all-pass filter which blocks only a specified band. A typical notch 

filter magnitude characteristic is shown in Figure 23. This filter has a notch width 

of 0.1 NFU with a center frequency of 0.25 NFU. 

Our procedure is similar to that used in the bandpass experiments. A notch 

filter is formed with a specified center and notch-width. The filter is fed white noise 

and the filter's output is used to excite the plant. Output and input measurements 

are then used to build a regressor matrix from which we calculate the same metrics 

we have seen in previous experiments.  Again, each notch filter is used 500 times 
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Figure 21. Information Matrix Condition Number for the Plant Illustrated in Fig- 
ure 16 Driven by Bandpass-Filtered Noise: These plots show the con- 
dition number of the Information Matrix versus the center frequency of 
an input-coloring bandpass filter, (a) shows the condition number as a 
function of the center of the pass-band, (b) shows the plant's magnitude 
response (solid) and the bandpass filter magnitude characteristic (dotted) 
which yields the best condition number. 
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(b) Pass-Band Yielding the Best Trace 

Figure 22. Error Covariance Matrix Trace for the Plant Illustrated in Figure 16 
Driven by Bandpass-Filtered Noise: These plots show the trace of the 
error covariance matrix versus the center frequency of an input- coloring 
bandpass filter, (a) shows the trace as a function of the center of the 
pass-band, (b) shows the plant's magnitude response (solid) and the 
bandpass filter magnitude characteristic (dotted) which yields the best 
error covariance trace. 
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Figure 23. Magnitude Characteristic for a Typical Bandstop Filter 

in a Monte Carlo analysis wherein the desired metrics are averaged over the num- 

ber of runs. After conducting this procedure for each notch center frequency, the 

performance metrics are plotted versus the center frequencies. Following the same 

rationale outlined in Section 5.2.2, we set the notch-width to 0.05 NFU; we consider 

200 notch-center frequencies equally spaced through the frequency domain; we use 

regressor-matrix lengths of 80 samples taken from the ends of 10,000 point runs. 

This experiment further supports using the inverse of the plant as a shaping 

filter for enhanced identifiability. Figure 24 shows that the Information Matrix's 

condition number is minimized when the input's PSD excludes frequencies centered 

on the plant's resonant peak. Likewise, we minimize the estimation error covariance 

matrix's trace by excluding this same band of frequencies, as is shown in Figure 25. 

Therefore, out of the 200 different notch filters tested, the one which yields the 

highest potential for identifiability is the filter whose magnitude most closely ap- 

proximates the inverse of the plant's magnitude. 
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Figure 24. Information Matrix Condition Number for the Plant Illustrated in Fig- 
ure 16 Driven by Bandstop-Filtered Noise: These plots show the con- 
dition number of the Information Matrix versus the center frequency of 
an input-coloring bandstop filter, (a) shows the condition number as a 
function of the center of the stop-band, (b) shows the plant's magnitude 
response (solid) and the bandstop filter magnitude characteristic (dotted) 
which yields the best condition number. 
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Figure 25. Error Covariance Matrix Trace for the Plant Illustrated in Figure 16 
Driven by Bandpass-Filtered Noise: These plots show the trace of the 
error covariance matrix versus the center frequency of an input- coloring 
bandpass filter, (a) shows the trace as a function of the center of the 
pass-band, (b) shows the plant's magnitude response (solid) and the 
bandpass filter magnitude characteristic (dotted) which yields the best 

error covariance trace. 
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5.3    Parameter Estimation 

We move now to the problem of estimating the parameters defining the math- 

ematical model for a dynamical system. We saw in Chapter IV that the optimal 

input PSD for ID is inversely proportional to the plant's PSD when output power 

is constrained and the measurement noise is white. Furthermore, the experiments 

documented in previous sections of this chapter suggest an input PSD which ap- 

proximates the inverse of the plant (at least around frequencies of resonance and 

anti-resonance). 

The experiments documented in this section are designed to illustrate the su- 

periority of the plant's inverse used as a shaping filter. Now, the problem of finding 

the optimal frequency shape of the input entails maximizing (or minimizing) a func- 

tional (i.e. functional optimization). Therefore, the domain of possible solutions 

has infinite dimensions, making the challenge of comparing all possible input PSD's 

clearly impossible to undertake. 

Since we cannot explore all possible input frequency shapes, we will use straight 

white noise input as a baseline for comparison. This choice is arbitrary, but not 

without motivation. First, white noise is easy to implement; all we need is a random 

number generator and a gain. Second, white noise seems like a good choice because 

it contains all frequencies, ensuring that all modes of the plant are excited. 

The methodology we employ in these experiments is straightforward Monte 

Carlo analysis. The plant is excited with the chosen input and the ID algorithm 

outlined in Appendix A is used to extract parameter estimates from the input se- 

quence and a noise-corrupted measurement of the output. We repeat this procedure 

many times over many measurement noise realizations and compile statistics con- 

cerning the parameter estimates and the associated errors. Specifically, we run the 

estimation 100 times with measurement noise added to create a SNR of 40 dB. Note 

also that we adjust all input sequences to achieve an average output power of unity. 
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Figure 26. Bode Plot for the Plant to be Identified. 

Thus, the measurement noise is simply a white Gaussian random sequence with a 

variance of 0.01. 

5.3.1 Identification of an "Academic" Plant. In contrast to the models used 

in the previous experiments, this plant's poles are situated at much lower frequencies. 

We used high-frequency poles and zeros previously in order to facilitate plotting 

the effects near resonant frequencies. However, we wish now to illustrate the ID 

algorithm's ability to estimate the parameters of a model which represents a more 

realistic situation. That is, the sampling frequency is much higher than any dominant 

mode. Specifically, the plant is second order with poles situated at 0.01 NFU and a 

damping ratio of £ = 0.1. The transfer function is given by 

biz 9.9371 x 10~4z 
G^     z2 + axz + a2      z

2 - 1.9927z + 0.99371 

This model's Bode magnitude and phase plots are shown in Figure 26. 

(124) 

Once again, we are concentrating on the scenario in which output power is 

constrained and the measurement noise model is white. Thus, the optimal input 

PSD is proportional to the inverse of the plant's magnitude response squared. 

106 



Figures 27 through 32 give the results of this ID experiment. These plots 

clearly show us that the plant's inverse used as an input shaping filter yields markedly 

better identification compared to the use of white noise input. Figure 27 shows a 

good example. We see that the estimate bias on the a\ parameter is reduced to an 

almost negligible level when the input is optimally colored, while white noise input 

yields a significant bias. Furthermore, we see that the RMS error for a,\ is reduced 

by about an order of magnitude by using the plant's inverse as an input shaping 

filter. This effect is continued for the rest of the parameters. Note especially the 

RMS error plots; RMS error captures both bias error and error variance. 

5.3.2 Identification of an Air-to-Air Missile's Dynamics. We now identify 

a realistic plant which represents a typical tail-controlled air-to-air missile. The 

transfer function presented here is taken from Brown's [34] M.S. thesis and related 

paper [35]. We consider the longitudinal acceleration versus pitch fin deflection. The 

continuous-time transfer function of the missile plant is 

10.091(s2 + 1.5580a - 774.18) 
(*> ~ s3 + 42.442s2 + 292.985 + 7812.5 

Transforming G into discrete-time form yields 

1Q-2 x (2.3956z2 - 4.7936z + 2.3864) 
^        z3 - 2.8975z2 + 2.7970z - 0.89933 

where we have assumed a sampling rate of 400 Hz and a zero-order hold on the 

input. The Bode plots for this transfer function appear in Figure 33. 

Figures 34 - 39 illustrate the results of this experiment. We first look at the 

errors committed in the autoregressive parameters. Figures 34 - 36 show us that 

optimally coloring the input yields estimates of the autoregressive parameters which 

are slightly better than those estimates calculated from white-noise input. However, 

the moving average (i.e. numerator) parameter estimates benefit dramatically from 

optimally coloring the input. Figure 37 shows that optimally colored input yields 

an improvement in the b\ coefficient RMS error of about a full order of magnitude. 
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Figure 27. a\ Coefficient Error: These plots compare the mean estimation error 
plus or minus one standard deviation committed on the a\ coefficient, 
(a) shows the ID error for white noise input and (b) shows the ID error 
committed when the input is optimally colored. 
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input is optimally colored. 
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(a) shows the ID error for white noise input and (b) shows the ID error 
committed when the input is optimally colored. 
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committed when the input is optimally colored. 
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Figure 33.    Missile Bode Plots: These Bode plots show the frequency response for the 
air-to-air missile 's longitudinal acceleration due to pitch fin deflection. 

The RMS error on the 62 and 63 parameters is reduced by about half through the 

use of colored input versus white input. 

5.4    Discussion 

This chapter presented several experiments relating input frequency content to 

parameter identifiability. We looked at the distribution of sinusoidal inputs, inputs 

defined by the outputs of various bandpass filters, and notch filters used as input 

shaping filters. Finally, we saw the results of an identification experiment comparing 

white noise input to the use of the plant's inverse as an input shaping filter. 

All these experiments support the optimality of using the plant's inverse as an 

input shaping filter. We saw that a sum of sinusoids is best grouped in frequency 

around a dip in the plant's magnitude response. Similarly, the 'best' bandpass filter 

is centered near an anti-resonant frequency. When the input is shaped by a notch 

filter, we can justify centering the notch near the plant's resonant frequency. Finally, 

actual parameter identification is dramatically improved by shaping the input's PSD 

114 



0.05- 

0.04- 

t-i 

«0 .03- 

0.02- 

0.01 

0.04 

0.035 

0.03 

10.025 
en 

2 0.02 
"3 

0.015 

0.01 

0.005- 

10 

10 

20 30 40   50   60 
Tune (Samples) 

70 

(a) White Noise Input 

80 90  100 

20   30  40  50  60  70   80  90  100 
Time (Samples) 

(b) Optimal Input for Output Power Constraints with White 
Measurement Noise 

Figure 34. Missile ID - ax RMS Error: These plots compare the RMS estimation 
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input is optimally colored. 
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Figure 35. Missile ID - a2 RMS Error: These plots compare the RMS estimation 
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input is optimally colored. 
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Figure 38. Missile ID - 62 RMS Error: These plots compare the RMS estimation 
error committed on the 62 coefficient, (a) shows the ID RMS error for 
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119 



xlO" 

1.4- 

1.2- 

«0.8 

20.6- 

0.4- 

0.2- 

10   20   30   40   SO   60   70   80   90   100 
Time (Samples) 

(a) White Noise Input 

xlO 

0.8 

«0.6 

0.4 

02 

0        10       20       30       40       SO       60       70       80       90       100 
Time (Samples) 

(b) Optimal Input for Output Power Constraints with 
White Measurement Noise 
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to be proportional to the inverse of the plant's PSD. Hence, we have confirmed the 

validity and usefulness of the theory developed in Chapter IV. 

Furthermore, these experiments suggest a strong link between maximizing out- 

put entropy and minimizing estimation error. We derived the optimal input such that 

it provides the ID algorithm with as much information as possible. The experiments 

we conducted for this chapter clearly demonstrate that increasing the information 

content of the measured signals can reduce parameter estimation error. 

We now have a tested technique for generating inputs which are optimal in an 

information theoretic sense. Furthermore, we have seen that these optimal inputs 

facilitate parameter estimates with higher accuracy (compared to results where white 

noise is used as an input). However, we may still wish to answer the question, "How 

close must the parameter estimates be?" Chapter VI provides a partial answer via 

some theory and experimental evidence. 
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VI.   Limits of System Identification 

Chapter V documented experiments which clearly show the utility of the the- 

ory developed in Chapter IV. Furthermore, we saw the results of experiments which 

suggest (through different metrics) that the optimal shaping filter has a PSD equal 

to the inverse of the plant's PSD, which corroborates the results of Chapter IV. In 

this chapter, we now concern ourselves with the practical limits of System Identi- 

fication. In other words, we wish to explore the complexity of systems which can 

be successfully identified under the best possible conditions, and such that a level 

of parameter error which is acceptable is obtained. Furthermore, we will investigate 

the effects of Signal to Noise Ratio on ID accuracy. 

6.1    Introduction 

The role of System Identification (ID) is to generate models of the plant for 

the purpose of off-line or on-line control design (e.g., as required in indirect adaptive 

control). System Identification is a data-driven procedure where system inputs and 

noise-corrupted output measurements are used to estimate the parameters defining 

a dynamic system. In the case of linear, time-invariant systems, we are faced with 

identifying the coefficients of polynomials making up a rational transfer function. 

When applied to control design using frequency-domain methods, the control en- 

gineer is probably most interested in the poles and zeros of the dynamical system. 

Hence, one should be concerned with the accuracy of the roots (viz., the poles and 

zeros) and the frequency response of the identified system, rather than the coeffi- 

cients of its transfer function. Therefore, one objective of this chapter is to illustrate 

the sensitivity of a polynomial's roots and the resulting transfer function's magni- 

tude response with respect to identification errors in the coefficients; said errors are 

commensurate with ID accuracy. 
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The sensitivity of the roots of high-order polynomials with respect to the poly- 

nomial's coefficients is well known to Applied Mathematicians [5, 73]. Unfortunately, 

in engineering circles the belief sometimes persists that the very use of high-order 

models is conducive to higher accuracy. The above mentioned sensitivity problem 

is easily recognized upon performing Matlab® experiments using the roots and poly 

commands. Now, the source of error encountered by numerical mathematicians is 

numeric, and is, therefore, of a very low level. In contrast, the controls engineer must 

contend with realistic measurement noise, which greatly exacerbates the sensitivity 

problem. 

This chapter is organized as follows. Section 6.2 states and explores the poly- 

nomial roots' sensitivity problem. Section 6.3 presents experimental results which 

illustrate the sensitivity of polynomial roots with respect to equal errors in each of 

the polynomial coefficients. Section 6.4 gives the effects of coefficient errors arising 

from realistic identification experiments which include measurement noise. Section 

6.5 presents some interesting experiments that lead to the paradoxical situation in 

which a larger Signal to Noise Ratio can lead to higher estimation errors. Finally, 

Section 6.6 offers some conclusions. 

6.2   Sensitivity of Roots to Coefficient Errors 

Theoretically, the roots of a polynomial depend continuously on its coefficients. 

At the same time, the roots of a polynomial can be very sensitive to small errors in 

the coefficients of the polynomial. The following discussion, adapted from Ralston 

[73] (see also [5]), gives some insight into the problem. 

Consider a polynomial of the form 

/(*) = £>*•" (125) 
•=o 

123 



Perturb / by introducing errors in the polynomial's coefficients, viz., obtain the 

polynomial 

9{z) = f>,-Mty 
,=0 „ (126) 

i=0 

Now, if z0 is a root of / and z0 + e0 is a root of the perturbed polynomial g, then 

n 

g(z0 + e0)  = f(z0 + t0) + J2Hzo + ^oy = o 
n*'=° (127) 

«   eof'(z0) + 52öizi 
x=0 

where 

f'(z ) 4 ^ J [Zo)      dz 

and we have assumed that <5, and e0 are 'small,' allowing us to ignore products of 

the errors. 

Equation (127) gives an estimate for the error in the root: 

n 

i=0 kl - f^ (128) 

The utility of Equation (128) is limited when f'(z0) is small, as is the case when z0 

is a repeated root. Of course, a very small f'(z0) implies that our initial assumption 

of small errors is incorrect, in which case Equation (128) provides a poor estimate 

of the error. Equation (128) also warns us that in the case of 'high-stiffness', where 

the roots of the polynomial are located in widely separated clusters, accurate roots 

will be difficult to resolve. 

We can also experience problems with this estimate even when f'(z0) is large. 

Again, Ralston [73] gives the following example. 

Consider a polynomial with roots {—1, —2,..., —20} 

/(z) = (z + l)(z + 2)-.-(* + 20) (129) 
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If z0 = —20, then |/'(^0)| = 19! (certainly not small). Assuming a very small error 

in aig, say 619 = 10-7, then Equation (128) gives the error estimate 

10"72019 

M«^-«4.3 (130) 

which is not small relative to z0 = —20. Thus, we cannot trust the estimate of the 

error in this root due to an error in the z19 coefficient. However, by contrapositive 

argument, we can predict significant errors in the roots arising from the seemingly 

small coefficient error. A polynomial with this property is said to be ill-conditioned. 

The previous discussion illustrates the effect of polynomial ill-conditioning. 

Obviously, an ill-conditioned polynomial may be factored accurately only if the co- 

efficients are given to a high degree of precision. Unfortunately, high degree poly- 

nomials are usually ill-conditioned. In fact, "it is generally true that the solution of 

high-degree polynomial equations requires the use of multiple-precision floating-point 

arithmetic in order to achieve high accuracy" [73]. 

Now, Ralston [73] (see also [5]) is referring to miniscule errors committed by 

quantizing real numbers into floating-point representations required by digital com- 

puters. Indeed, such digital quantization noise is very small. Double precision allows 

about 17 decimal digits of precision, or approximately a 340 dB signal to noise ratio 

(SNR). Indeed, a good example of the requirement for very high numerical pre- 

cision in control design is given by the frequency-domain Quantitative Feedback 

Theory CAD package described in [77, 78]. The user-defined precision capability of 

Mathematica® was used to achieve as much as 100 digits of precision (which rep- 

resents a huge 2000 dB SNR!) in order to combat the significant deleterious effects 

of very small quantization noise. In contrast, System Identification relies on noisy 

measurements, and hence is operating on much 'dirtier' data; a typical SNR for ID 

in an engineering environment is closer to 40 - 60 dB. Thus, much of the accomplish- 

ments of Numerical Analysis is not applicable to ID work, since errors associated 
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with the identification of transfer function poles and zeros are driven primarily by 

large measurement noise. 

Hence, we have seen how even the relatively sterilized environment of the dig- 

ital computer, with errors created only by quantizing perfect data, can have marked 

effects on the accuracy of the roots of polynomials. Next, we investigate the sensi- 

tivity of roots of polynomials, where coefficients are obtained from ID experiments 

using data corrupted by 'real-world' levels of noise. 

6.3   Experiments Using Equal Coefficient Errors 

Consider a very simple seventh-order, all-pole plant represented by the transfer 

function 

8! 
G(S) = (a + 2)(a + 3)...(* + 7)(* + 8) (131) 

Indeed, the plant's characteristic equation is fairly benign, for its stiffness (ratio 

of the highest to the lowest root [73]) is rather limited, and no double roots are 

present. We assume the ID scheme can identify the coefficients of the transfer func- 

tion to within some bound, then construct polynomials consisting of the nominal 

seven coefficient values ± the error. In this case of a seventh-order polynomial, 

Matlab® is used to build 37 = 2187 different polynomials, corresponding to every 

combination of the nominal coefficient values ± error. As each polynomial is con- 

structed, Matlab® calculates the poles and the frequency response of the transfer 

function defined in Equation (131). 

First, we set the relative error to ±1% for all coefficients. The scatter diagram 

in Figure 40(a) shows all possible roots (poles) for the 2187 different polynomials. 

The nominal roots (poles) are highlighted by an asterisk while the roots (poles) of 

the perturbed polynomials are depicted by dots. Notice how very small errors in the 

coefficients translate into large excursions in the placement of the roots. In particular, 

Figure 40(b) shows the dominant roots for each of the 2187 polynomials. These poles, 
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Figure 40. Coefficient Sensitivity (Seventh-Order Polynomial): These plots show 
the sensitivity to 1% errors in the coefficients of a seventh-order poly- 
nomial, (a) and (b) show all roots and dominant roots, respectively, (c) 
shows the magnitude response for the nominal and perturbed character- 
istic polynomials, (d) shows the worst-case deviations from nominal. 

The nominal transfer function is given by G(s) = (s+2\ta+3)...(s+8)- 

which determine the time-domain response of the dynamical system, drift far enough 

to have a damping ratio of approximately 0.8. On the more encouraging side, Figures 

40(c) and (d) show that the magnitude response of the perturbed transfer function 

deviates from the nominal by only about 0.6 dB, in the worst case. 
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The next Matlab® experiment is performed identically to the first, but here 

the coefficient errors are bounded by a seemingly acceptable level of accuracy of 

±10%. The fingerprint-like plots shown in Figures 41(a) and (b) illustrate that the 

roots (poles) now deviate markedly from the nominal. In fact, the dominant roots 

can drift far enough to exhibit a natural frequency of about 7ftjr with a damping 

ratio as low as about 0.2. Clearly, this difference in root (pole) locations would 

have a significant effect on closed-loop stability. The effect of the drifting coefficients 

is further illustrated by the magnitude response curves shown in Figures 41(c) and 

(d). The 'small' 10% errors in the coefficients yield a transfer function error envelope 

which expands to about 14 dB wide, at relatively low frequencies. Hence, errors in the 

coefficients of the transfer function's polynomials manifest themselves as structured 

uncertainty. 

6.4    Coefficient Errors 

The previous section demonstrated the sensitivity of polynomial root (pole) 

placement to errors in the coefficients defining the transfer function. The next ques- 

tion is, "How much error do we reasonably expect in the identification of the coeffi- 

cients?" 

Several ID experiments generate a partial answer. These experiments are per- 

formed with different transfer functions, each based on a continuous-time system 

with poles placed according to Table 7. Each transfer function is converted into its 

discrete-time analog using a sampling time of ^ (i.e. four times the fastest nat- 

ural frequency). Next, the coefficients making up the Z-plane transfer functions' 

denominators are estimated via weighted least-squares Linear Regression, with the 

weighting matrix given by the inverse of the covariance of the 'equation-error' vector, 

as discussed in Chapter III. 
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Figure 41. Coefficient Sensitivity (Seventh-Order Polynomial): These plots show 
the sensitivity to 10% errors in the coefficients of a seventh-order poly- 
nomial, (a) and (b) show all roots and dominant roots, respectively, (c) 
shows the magnitude response for the nominal and perturbed character- 
istic polynomials, (d) shows the worst-case deviations from nominal. 
The nominal transfer function is given by G(s) = (J+2w3+3)...(a+8) • 

6.4-1 Identification Using Weighted-Least-Squares. The regressions for the 

experiments documented in this section are performed on a window of input /output 

pairs generated by exciting the 'plant' with noise colored by a shaping filter which 

approximates the inverse of the plant, motivated by theory developed in Chapter IV. 

The outputs are corrupted by Gaussian white noise designed to produce a SNR of 
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Table 7 Roots and RMS Coefficient Estimation Errors 

Order Roots 
Coefficient Errors (% of Nominal) 
<*i 0-2 03 (I4 a5 Ü6 a7 

2 -2,-8 0.07 0.2 
3 -2,-3,-8 0.11 0.32 0.75 
4 -2,-3,-4,-8 0.28 0.75 1.5 2.8 
5 -2,-3,-4,-5,-8 0.61 1.6 3.2 5.8 10 
6 -2,-3,-4,-5,-6,-8 1.1 2.9 5.8 11 19 32 
7 -2,-3,-4,-5,-6,-7,-8 1.6 4.3 8.7 16 29 52 92 

100 dB - i.e. very 'clean' measurements are used. In each case, the regressor is 

constructed such that its length is 2m2 where m is the number of unknown coeffi- 

cients. This regressor is used in a Weighted Least Squares scheme to estimate the 

parameters. The regression is performed 1000 times in a Monte Carlo fashion. The 

results are summarized in Table 7, where 

v '      1 + axz~l + a2z~2 + h a7z~7 

We see that as the model-order increases, the coefficient error increases dramatically. 

In particular, notice that the errors make a striking jump as the order of the plant 

increases from sixth to seventh-order. Furthermore, higher-indexed coefficients are 

harder to estimate. 

For further insight, Matlab® is used to produce plots of the root locations 

and frequency response for each of the identified plants outlined in Table 7. Each 

experiment yields three plots. First, the root locations are illustrated - both actual 

roots and the roots of the identified system. Next, Bode magnitude and phase plots 

show the worst-case errors over the entire 1000 run Monte Carlo set. The worst-case 

envelopes are defined on a point-by-point basis throughout the frequency domain. 

Finally, the RMS errors in both magnitude and phase are presented as a function of 

frequency. Note that all frequencies are normalized such that unity corresponds to 

the Nyquist frequency. 
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Figure 42. Identification Errors (Second-Order System): These plots are derived 
from a 1000 run Monte Carlo analysis, (a) shows root locations (Ac- 
tual *, Identified •). (b) shows worst-case frequency response envelopes, 
(c) shows magnitude and phase RMS errors. 

The first experiment in this series involves the identification of a simple second- 

order plant with real roots. As Figure 42 shows, the identification is quite successful. 

We see very little error in root locations and magnitude and phase response. In fact, 

the dots (•) indicating the identified root locations are obscured by the asterisks (*) 

which represent the true root locations. 
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As we increase model-order from third through sixth-order, we see a gradual 

degradation in the identification. Figure 43(a) shows the migration of the root loca- 

tions for the the third-order plant experiment. Although the roots are misidentified 

slightly, Figures 43(b) and (c) show that the ID error hardly manifests itself in the 

response curves. This phenomenon continues for higher-order plants, up to the sixth- 

order plant. Figures 44 through 46 illustrate a broadening of the root-location 'fin- 

gerprint' with virtually no error in the response curves. In particular, the sixth- 

order (Figure 46) identification yields models which deviate from the true plant by 

a fraction of a decibel in magnitude and only about four degrees in phase. Further- 

more, the error is concentrated in higher frequencies; such error distribution is easily 

handled by modern control system synthesis techniques. 

Error distribution changes markedly, however, when the model order is in- 

creased from six to seven. Figure 47 illustrates some of the problems associated with 

identifying higher-order plants. The root (pole) locations shown in Figure 47(a) in- 

dicate that a significant number of the identified plants have poles outside the unit 

circle, erroneously indicating an unstable system. Furthermore, the response curves 

for this seventh-order identification show an error distribution with much of the iden- 

tification error concentrated in the lower frequencies. This 'structured uncertainty' 

would force the controls engineer into compromising large amounts of performance 

in order to ensure closed-loop stability. Here, high-order identification is a losing 

proposition. 

6.4.2 Identification Using Unweighted-Least-Squares. The next set of ex- 

periments is performed identically to those documented in the previous section with 

one important exception. Namely, least-squares identification is used without the 

benefit of weighting. We see in Figures 48 through 53 that the lack of proper weight- 

ing exacerbates the order-dependent problems associated with the identifiability of 

the plant under test. In particular, the second, third, and fourth-order plant identi- 

fication experiments (Figures 48 - 50) yield plant models which closely approximate 
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Figure 43. Identification Errors (Third-Order System): These plots are derived 
from a 1000 run Monte Carlo analysis, (a) shows root locations (Ac- 
tual *, Identified •). (b) shows worst-case frequency response envelopes, 
(c) shows magnitude and phase RMS errors. 

the system. In contrast, the higher-order-plant identification degrades to unaccept- 

able error levels when the plant under test is as simple as fifth-order. Figure 51 shows 

a broad spread in the root-location 'fingerprint,' along with high low-frequency er- 

rors. As model order is increased to six and seven (Figures 52 and 53), the identified 

plants bear little resemblance to the underlying truth-model plant, again with error 

concentrated in the lower frequencies. 
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Figure 44. Identification Errors (Fourth-Order System): These plots are derived 
from a 1000 run Monte Carlo analysis, (a) shows root locations (Ac- 
tual *, Identified •). (h) shows worst-case frequency response envelopes, 
(c) shows magnitude and phase RMS errors. 

6.5    Signal to Noise Ratio Versus ID Accuracy 

The experiments documented in the previous section are all based on ID with 

a SNR of 100 dB. We may also wonder how varying the SNR affects the accuracy 

of the estimates. Surely, we expect the identification accuracy to increase as the 

measurements become cleaner. However, we shall see that this is not always the 

case. 
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Figure 45. Identification Errors (Fifth-Order System): These plots are derived from 
a 1000 run Monte Carlo analysis, (a) shows root locations (Actual *, 
Identified ■). (b) shows worst-case frequency response envelopes, (c) 
shows magnitude and phase RMS errors. 

Consider the ID experiment documented in Figure 47. Here, we corrupted 

the measurements with white noise in order to achieve a SNR of 100 dB. We now 

conduct the same experiment with a SNR of 40 dB. Figure 54 shows the results of 

this experiment. 

Comparing Figures 47 and 54, we see that the identification error is lessened 

in the case of lower SNR! In particular, notice the reduction of low frequency error 
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Figure 46. Identification Errors (Sixth-Order System): These plots are derived from 
a 1000 run Monte Carlo analysis, (a) shows root locations (Actual *, 
Identified ■). (b) shows worst-case frequency response envelopes, (c) 
shows magnitude and phase RMS errors. 

exhibited by the identified plants when the measurement is 40 dB below the signal. 

Figure 55 brings the frequency response error plots together for comparison. 

Figure 55 clearly shows that the identification commits significantly greater 

errors when the measurements are cleaner. That is, our original hypothesis that 

ID errors will decrease with increasing SNR is incorrect. Now, if ID error does not 
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Figure 47. Identification Errors (Seventh-Order System): These plots are derived 
from a 1000 run Monte Carlo analysis, (a) shows root locations (Ac- 
tual *, Identified ■). (b) shows worst-case frequency response envelopes, 
(c) shows magnitude and phase RMS errors. 

monotonically decrease with growing SNR, we are motivated to determine just how 

the error behaves with varying SNR. 

6.5.1 ID Error Versus SNR - Weighted Least Squares. We investigate the 

error behavior by conducting an ID experiment with increasing SNR and observe the 

error committed as a function of the SNR. This experiment is carried out similarly 

to that for the previous case, but now we allow the SNR to range from -10 dB to 190 
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Figure 48. Unweighted Least Squares Identification Errors (Second- Order System): 
These plots are derived from a 1000 run Monte Carlo analysis, (a) shows 
root locations (Actual *, Identified •). (b) shows worst-case frequency 
response envelopes, (c) shows magnitude and phase RMS errors. 

dB in increments of 5 dB. At each value of SNR, we perform 1000 Weighted Least 

Squares identification runs in a Monte Carlo fashion (201,000 total runs). As we 

noted previously, the low-frequency error is most relevant to control system design, 

so we concentrate on the RMS error committed in the magnitude frequency response 

curve at three low frequencies: 10~4, 10-3, and 10-2 Normalized Frequency Units 

(NFU). Figure 56 shows the results of this experiment. 
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Figure 49. Unweighted Least Squares Identification Errors (Third-Order System): 
These plots are derived from a 1000 run Monte Carlo analysis, (a) shows 
root locations (Actual *, Identified •). (b) shows worst-case frequency 
response envelopes, (c) shows magnitude and phase RMS errors. 

The plots in Figure 56 clearly show that the low frequency error exhibited by 

the identified models does not monotonically decrease with increasing SNR. In fact, 

the error decreases as expected up to about 50 dB SNR; larger SNR's after 50 dB 

induce a sharp rise in the low frequency response errors committed by the identified 

models. Thus, for this experiment, the optimum SNR is about 50 dB. Furthermore, 

the error effectively levels off for SNR's above about 120 dB. 
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Figure 50. Unweighted Least Squares Identification Errors (Fourth- Order System): 
These plots are derived from a 1000 run Monte Carlo analysis, (a) shows 
root locations (Actual *, Identified ■). (b) shows worst-case frequency 
response envelopes, (c) shows magnitude and phase RMS errors. 

Why do we see this strange behavior of the ID error? We propose an expla- 

nation involving the weighting used in the identification. The weighting matrix (as 

described in Chapter III) is derived based on the assumption of white noise on the 

output measurements. As SNR increases above about 50 dB, the signal begins to 

overpower the noise until the measurement noise is insignificant. Effectively, the ID 

is tuned for noise when very little noise is present. That is, the identification is mis- 

tuned, analogous to an improperly tuned Kaiman filter. As SNR approaches about 
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Figure 51. Unweighted Least Squares Identification Errors (Fifth-Order System): 
These plots are derived from a 1000 run Monte Carlo analysis, (a) shows 
root locations (Actual *, Identified •). (b) shows worst-case frequency 
response envelopes, (c) shows magnitude and phase RMS errors. 

120 dB, the measurement noise is no longer a player, and numerical error drives the 

ID error. 

6.5.2 ID Error Versus SNR - Unweighted Least Squares. In order to verify 

the proposed explanation for non-decreasing ID error versus SNR, we present the 

results of another experiment for which the identification is accomplished with no 

weighting. Figure 57 shows the results of this experiment. These plots show the RMS 

141 



Real 

(a) Root Locations 

10 10 
Nomwliied Frequency 

(b) Worst-Case Envelopes 

Nonndiied Frequency 

(c) RMS Errors 

Figure 52. Unweighted Least Squares Identification Errors (Sixth-Order System): 
These plots are derived from a 1000 run Monte Carlo analysis, (a) shows 
root locations (Actual *, Identified ■). (b) shows worst-case frequency 
response envelopes, (c) shows magnitude and phase RMS errors. 

ID error in the magnitude frequency response curves using Standard Least Squares 

estimation; the Weighted Least Squares results are superimposed for comparison. 

Here we see that the estimation error is high for low SNR and drops dramatically for 

SNR above about 90 dB. In contrast, the Weighted Least Squares curves show signifi- 

cantly better performance at low values for SNR (i.e. significantly high measurement 

noise). As the SNR increases to above about 140 dB, the Unweighted Least Squares 

estimate error drops below the error committed by the Weighted Least Squares ID. 
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Figure 53. Unweighted Least Squares Identification Errors (Seventh-Order Sys- 
tem): These plots are derived from a 1000 run Monte Carlo analysis, 
(a) shows root locations (Actual *, Identified •). (b) shows worst-case 
frequency response envelopes, (c) shows magnitude and phase RMS er- 
rors. 

Thus, properly tuned ID outperforms ID with incorrect measurement noise assump- 

tions. 

The phenomenon by which estimation performance drops off with increasing 

SNR is not without precedent. For example, a paper by Denham [15] documents the 

derivation of an iterated extended Kaiman filter applied to a nonlinear plant with 

measurement noise.  Denham found that the performance of the filter could be in- 
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Figure 54. Unweighted Least Squares Identification Errors (Seventh-Order System 
With 40 dB SNR): These plots are derived from a 1000 run Monte 
Carlo analysis, (a) shows root locations (Actual *, Identified ■). (b) 
shows worst-case frequency response envelopes, (c) shows magnitude 
and phase RMS errors. 

creased by injecting artificial measurement noise, thereby decreasing the SNR (not to 

be confused with 'pseudo-noise' used in the tuning of a Kaiman filter). Furthermore, 

the following section presents a discussion of a simple example which illustrates the 

potential for deleterious effects on ID performance caused by increasing SNR. 
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Figure 56. RMS ID Error Versus SNR: These plots show the error committed by 
Weighted Least Squares as a function of SNR. The truth model is a 
seventh-order all real pole plant described in Section 6.4 

6.5.3 Signal to Noise Ratio Effects. We present here an interesting example 

which illustrates that non-judiciously increasing the SNR (e.g. by increasing the 

input's magnitude) may not be the best approach to enhancing ID. Thus, consider 

the scenario in which we wish to determine the value of an unknown static gain. 

With an input n and resulting output y, the gain is given by 
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Figure 57. RMS ID Error Versus SNR Unweighted Least Squares: These plots show 
the error committed by Weighted and Unweighted Least Squares as a 
function of SNR. The truth model is a seventh-order all real pole plant 
described in Section 6.4 

We have access to noise-corrupted measurements of the output z and input u. Thus, 

we form the estimate of the gain by 

jr. = 
Z = V + VV 

where vy and vß are realizations of the random variables vy and vM. 
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Now, let us assume that vM and vy are independent, zero-mean, Gaussian ran- 

dom variables with equal variance a2. With these assumptions, we calculate the 

expected value of the estimate: 

>•   J        J-ooJ-oo H + V 

y + Vy     i 
'27T<72 

exp 
2a2 >dvtidvy 

A little manipulation, aided by Mathematica® [93] allows us to evaluate the integral 

and yields 

M 

W = 7. 
\/2M 

crexp {£*} ./o 
<ft 

2 

Defining the SNR as 5 = % and recognizing that A; = ^, we have 

f {k} = k ^M^Jf'** (132) 

Thus, we see that the expected value of the gain estimate consists of the product of 

the correct gain and a multiplicative bias term. 

Let us concentrate on the bias term: 

B(S)± 
y/2Sr2et2dt 

Jo  
5 

e2 
(133) 

B(S) is nominally equal to unity - that is, if the expected value of the estimate is 

to be equal to the correct value of the gain, then the multiplicative bias term must 

reduce to one. First, we expect B(S) to approach one as the SNR, 5, grows very 

large. To confirm this, we take the limit of B(S) as S approaches infinity. 

lim B(S) = lim 
S->oo S-»-oo 

V2ST 
; Jo 

e dt 
s_ (134) 
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Repeated use of L'Hopital's rule and Leibnitz's rule in Equation (134) yields 

rVJ V2S£ e* dt 

limB(S)   =    lim *—TTT- 

=    lim 1+ =^7 
e dt 

s-oo]   T      v^ef 

=   1 + V5lim 4 
S-K» d 

IS {y/Sef} 

1     cg 
=   1 + y/2 lim 1   J^ t j 

5-»co iV<->eT + —±==62 

=   1 + lim -j4rr   =   1 (135) 

Thus, we that as the SNR approaches infinity (i.e.   no measurement noise), the 

expected value of the estimate approaches the correct value. 

Although we know that the estimate's expected value approaches the nomi- 

nal value, we still may wonder about the manner in which the approach is made. 

Figure 58 shows the curve defined by Equation (133). The curves are created by 

the quad8 function in Matlab® which employs an adaptive recursive Newton-Cotes 

eight-panel rule. 

Surprisingly, the estimation bias is not monotonic with respect to the SNR. 

Figure 58(b) indicates that the multiplicative term peaks at about 1.3 for a SNR of 

about 4.5. Furthermore, the estimate is unbiased for a SNR of about 1.7. Thus, if 

our goal is to eliminate the expected bias, we would choose an input such that the 

SNR is fairly small! 
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Figure 58. Multiplicative Bias Versus SNR: These plots illustrate the multiplicative 
term in the expected value of a gain estimate when the input and output 
measurements are noise-corrupted,  (b) is a detail of (a). 
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In conclusion, we have shown, by way of an example, that indiscriminately 

boosting the signal to noise ratio does not always yield the best estimates. Here, 

if we originally chose an input which produced a SNR of 1.7, but later decided to 

use more input energy, increasing the SNR to 4.5, we would actually increase the 

estimate bias. Obviously, we are in the realm of nonlinear estimation. 

6.6    Conclusions 

As we saw previously, small errors in the identified coefficients of the trans- 

fer function can produce large errors in other quantities which are important in 

frequency-domain control system design (e.g. locations of the plant's poles and ze- 

ros). Indeed, root position and Bode magnitude plots of the transfer function are 

significantly affected by seemingly small discrepancies in the coefficients. 

Furthermore, over-modeling does not pay. It is better to use a simplified model 

of the plant rather than pursue the elusive goal of accurately capturing the high- 

order dynamics of the plant, and in doing so sacrifice the estimation/identification 

accuracy of its dominant modes. 

Another interesting inference can be made from the data produced by these 

experiments. Namely, uncertainty of the transfer function is not necessarily low for 

low frequencies and high for higher frequencies, as is widely assumed (and required) 

for many robust control system design techniques [17]. The ID-induced uncertainty 

in the Bode plots is thus 'structured.' If robust controller design techniques are em- 

ployed as a basis for the controller portion of an adaptive control system (in order to 

ensure robustness to high-frequency phenomena such as order reduction), the engi- 

neer must be cognizant of the structured uncertainty attributed to model coefficient 

errors, in addition to modeling errors resulting from model-order truncation. Since 

both types of uncertainty exist within the paradigm of adaptive control, the curves 

describing uncertainty will be complex functions of frequency. Thus, the controls 

engineer should remember three important facts: 
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1. Relatively 'small' errors in identified polynomial coefficients can produce trans- 

fer functions which deviate significantly from the nominal (in a frequency- 

domain context). 

2. Lower-order transfer functions produce much smaller frequency-domain errors. 

One should not require very high-order plant models to describe the dynamics 

of real-world dynamical systems. Therefore, one should use the smallest order 

plant model possible. In fact, high-order transfer function models will almost 

assuredly force the ID portion of an adaptive controller to produce nonsense. 

3. Errors in the coefficients of the transfer function do not necessarily manifest 

themselves as errors limited to high frequencies. Rather, the frequency-domain 

errors appear as complex functions of both the nominal transfer function and 

frequency. Thus, if adaptive and modern robust control design techniques are 

applied together, the engineer must remember to account for low-frequency 

errors attributed to ID error. 

It has been shown that the chosen method of identification has a profound 

effect on the errors associated with the estimation. In this chapter, we see that a 

proper weighting scheme significantly enhances the ability of least-squares parameter 

estimation to yield acceptable plant models. Furthermore, the problems associated 

with identification of higher-order plants is somewhat alleviated by properly weight- 

ing the least-squares estimation. 

Finally, the ID error does not necessarily decrease with increasing signal-to- 

noise ratio. In fact, if the identification is not properly tuned, the ID algorithm can 

produce errors which do not significantly decrease for arbitrarily small measurement 

noise. This effect is probably caused by a combination of improperly weighting the 

least squares estimate and numerical noise which is inherent to any computation 

performed on a digital computer. 
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ID resides in the realm of nonlinear estimation. Hence, as we have seen, non- 

judiciously increasing the SNR does not guarantee improvement in identification. 

However, the theory presented in Chapter IV provides us the mechanism for opti- 

mally distributing the input energy for any given signal strength. 

So far, we have explored many aspects of input design for ID. We have devel- 

oped theory and tested the theory through experiments. We move now to Chap- 

ter VII wherein we summarize this research with conclusions and recommendations 

for future work. 
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VII.   Conclusions and Recommendations 

7.1    Summary 

In Chapter II of this dissertation, we begin with an investigation of ID in the 

sterilized environment facilitated by noise-free measurements. Since the required 

quantities were assumed to be known perfectly, we properly referred to ID in this 

context as modeling. The absence of measurement noise allowed us to form some con- 

clusions concerning some requirements for proper modeling of a dynamical system. 

Namely, the input applied to a plant under test must meet a minimum input-order 

constraint. Specifically, the input must exhibit an order greater than or equal to the 

number of unknown parameters. Chapter II also included a potentially useful con- 

jecture relating the determinant of the regressor matrix to the excitation order. The 

formula given in Conjecture 2.7.1 (on page 29) shows transparently that a necessary 

and sufficient condition for parameter identifiability is that the order of the input be 

at least equal to the length of the parameter vector. A proof of the conjecture for 

low-order systems is given. It is also shown that the assumed order of the model must 

not exceed the actual order of the true plant. A proof was presented in Chapter II 

which shows that over-modeling (i.e., choosing the model order too high) results in 

a rank-deficient regressor matrix. 

Next, Chapter III dealt with the inclusion of noise added to the plant model. 

Here, we clearly saw that ID suffers greatly by measurement noise. The impact of 

measurement noise is exacerbated by the fact that this noise finds its way into the 

equation error in such a way that the noise terms are correlated by the very param- 

eters the ID algorithm seeks to find. This phenomenon results in a weighting matrix 

(required for minimum-variance estimates) which is a function of the unknown pa- 

rameters. Thus, the ID problem is nonlinear, greatly complicating the identification. 

Surprisingly, process noise presents less of a problem to ID. We saw that this noise 

is correlated only by the assumed noise model. Therefore, if we are not interested 
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in estimating the noise model's parameters, we can more easily account for process 

noise. 

The problems associated with equation error correlation brought on by mea- 

surement noise were addressed via a new System Identification algorithm. Chap- 

ter III presented the derivation of this new algorithm designed around minimum 

variance estimation. Experiments were presented which illustrate the profound im- 

provement offered by this algorithm which correctly accounts for measurement noise. 

The algorithm circumvents the paradox encountered in ID (i.e., we must know the 

parameters in order to estimate the parameters properly) by iteratively weighting 

the estimates, said weighting being derived from past estimates. 

With a new ID algorithm in place, Chapter IV addressed the optimization of 

the inputs applied to an unknown plant for ID. This chapter presents an interesting 

connection between theory originally applied to communications and its application 

to identification. We saw that the plant, input generator, and the ID algorithm can 

be viewed as different entities in a communication scenario in which the message 

to be relayed consists of the plant parameters. This analogy allows us to formulate 

optimal inputs based on information theoretic concepts. 

Specifically, the information contained in the input/output pairs was calcu- 

lated using entropy. We saw in Chapter IV that entropy can be taken directly as a 

measure of a sequence's information content. Although an apparent dichotomy exists 

- entropy can be taken as a quantity to be either maximized or minimized for opti- 

mally - we saw that, in our context, maximizing information (entropy) is required 

in order to impart the maximum parameter information to the ID algorithm. 

Input shaping filters were designed by maximizing output entropy while meet- 

ing several different sets of constraints. Namely, we performed the maximization 

while holding the average output power constant. Next, we constrained the average 

input power. Finally, we designed shaping filters by performing unconstrained maxi- 
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mization of a performance/penalty functional with negative weights applied to both 

input and output powers. 

Each of the three approaches yielded interesting and useful results. Constrain- 

ing input power while maximizing output entropy resulted in inputs with power 

spectral densities (PSD) which are proportional to the inverse of the plant's mag- 

nitude squared. If the measurement noise is colored, then the optimal input PSD 

is attenuated in frequencies for which the noise is high. In contrast, if we constrain 

the input power, the optimum input for ID has a PSD which is constant throughout 

frequency if measurement noise is ignored. Accounting for measurement noise, the 

optimal input PSD is attenuated within frequencies for which the noise is high and 

for frequencies wherein the plant exhibits low gain. Finally, the unconstrained op- 

timization problem yields an input PSD which is a complicated combination of the 

previous two scenarios. 

After showing the basic formulations for the optimal input PSD, Chapter IV 

went on to formulate the solutions when the plant is unknown, using expected values 

in place of the known plant values. We saw that, given certain assumptions on 

the probability density functions describing the unknown parameters, the solution 

could be formulated by replacing instances of the known plant's magnitude with the 

expected value of the plant's magnitude. Thus, an adaptive, iterative input generator 

could be based on the best current estimate of the unknown parameters. 

Finally, Chapter IV discussed some implementation issues. First, each of the 

solutions for the optimal input PSD's contain terms which may result in nonsensical 

shaping filter magnitude characteristics (e.g. imaginary magnitude). We saw some 

ideas on dealing with cases such as those. Second, this chapter addressed the specific 

situation in which it is required to classify the unknown plant as being one of a 

predetermined finite sets of known plants and the input generator is teamed with 

a Multiple Model Adaptive Estimator (MMAE). We saw that this marriage might 

work quite well with very little on-line computational requirements. 
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Experiments were documented in Chapter V which confirm the optimality of 

the shaping filters derived previously. We saw evidence that the optimal shaping 

filter's magnitude response is the inverse of the plant's (when constraints are applied 

to the output power). Furthermore, the experiments documented here suggested a 

strong link between maximizing output entropy and minimizing estimation error. 

Next, Chapter VI explored the limits of System Identification with respect 

to the utility of the identified model. Since the roots of a high-order polynomial 

can be very sensitive to small errors in the coefficients defining the polynomial, we 

saw that ID must be very accurate if we desire high-order models. In fact, the ex- 

periments documented in this chapter provide compelling impetus for limiting the 

model's order to the smallest usable size. Furthermore, Chapter VI explored an 

interesting phenomenon in which the estimation error does not necessarily monoton- 

ically decrease as signal-to-noise ratio increases. Although this behavior is initially 

surprising, we offered one possible explanation. Namely, the ID which is tuned for 

a (realistic) scenario in which measurement noise is present incorrectly weights the 

estimates when SNR drops to such a level as to contradict the initial assumption 

of measurement noise and the way it enters the process. Of course, this high level 

of SNR is arguably unrealistic. Further exploration of the non-monotonic behavior 

of estimation error with respect to SNR was carried out analytically for the simple 

case of estimating a gain in the presence of noisy data. This analysis showed that 

a relatively low SNR produces perfect results (in the expected value), while higher 

signal levels can actually result in higher expected errors. 

7.2    Conclusions 

First, and foremost, we must conclude that System ID accuracy is highly de- 

pendent on the quality of the data taken from the measured system. Although this 

statement seems rather obvious, engineers often neglect to account for, and properly 

handle, the effects of measurement noise. 
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The accuracy of the identification can be optimized via the proper use of 

weighting in the estimation and by judicious application of inputs. That is, we 

can significantly increase the performance of the ID algorithm by shaping the inputs 

applied to the system and by tailoring the ID algorithm to account for noise in the 

measured plant outputs and inputs. 

Regardless of the input applied to the plant, ID cannot be accomplished suc- 

cessfully if the assumed model order is too high. We saw in Chapter II that iden- 

tification breaks down if the chosen model order is greater than the order of the 

unknown plant. Furthermore, the probing input's order must be greater than the 

number of parameters to be resolved from the input/output data. 

Deterministic modeling showed us the importance of proper model and input 

order choice. However, the choice of the input and structure of the ID profoundly 

affects the accuracy of the ID when measurement noise is present in the data. This 

noise sends the ID into the realm of stochastic estimation, thus motivating the use 

of a minimum-variance identification scheme which, on the surface, seems linear. 

However, more careful inspection shows that the weighting required to minimize 

the parameter error variance results in a set of equations which are nonlinear in the 

unknowns. Thus, the problem becomes much more difficult to solve and characterize; 

after all, System ID resides in the realm of nonlinear filtering. Chapter III presented 

and tested an iterative algorithm for computing the unknown parameters which 

properly accounts for measurement noise while maintaining the linear flavor of the 

problem, facilitating the use of well-known and easily implemented components of 

linear algebra. This algorithm represents a significant contribution to the field of 

System Identification. 

Regardless of the ID algorithm used, the input applied to the unknown plant 

plays an important part in the accuracy of the parameter estimates. The parameter 

error is seen to be closely linked to the information content of the input/output plant 

data. This information can be manipulated by the statistics of the input, allowing 
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us to optimize (maximize) the joint information between the input/output pairs and 

the unknown parameter vector. Since the optimization is carried out with respect 

to the PSD characteristics of the output data stream, the optimal input is described 

by a power spectral density. Thus, the optimal input is realized by a white sequence 

driving a shaping filter. Although the filter is described in part by the unknown 

plant parameters, we can iteratively define the filter, allowing it to evolve as the 

parameter estimates mature throughout the life of the identification. 

Experimental evidence corroborates the theory developed in this dissertation. 

We saw that experimentally derived suboptimal inputs' PSDs approach the PSD 

characteristics of the predicted optimal inputs. Furthermore, experiments indicate 

that proper weighting of the parameter estimates is vital to the accuracy of the 

identification, especially when root location is used as a metric of ID performance. 

Perhaps more significant, experiments indicate that parameter uncertainty can man- 

ifest itself in the frequency domain as high errors in low-frequency intervals. Thus, 

modern, robust, control system synthesis techniques should be applied with care as 

the basis of the controller-design portion of an adaptive control system. 

7.3    Contributions of this Dissertation 

This research contributes significantly to several different disciplines: system 

identification, adaptive control, and fault detection and isolation for reconfigurable 

control. The specific contributions are listed below: 

1. Optimal (with respect to output-information content) input power spectral 

density is derived for any arbitrarily colored measurement noise and plant 

combination. Thus, we are not confined to a white measurement noise model. 

Furthermore, the derivations allow us to consider constraints on either the 

input power or the output power. Additionally, the optimal input is derived 

for the unconstrained case, with weighting applied to the input and output 

power. 
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2. An efficient ID algorithm is presented which correctly accounts for measure- 

ment noise. The algorithm adapts to changing parameter estimates in order 

to weight properly the equation error induced by the measurement noise and 

the dynamics of the system under test. Experiments show the importance of 

proper measurement noise accounting in the identification. No proofs of con- 

vergence are presented; rather, experimental evidence indicates the superiority 

of this algorithm's performance relative to the performance of a widely-used 

unweighted least-squares algorithm. 

3. Theory and experiments are presented which underscore the nonlinearity of 

the estimation process. Said nonlinearity produces results which may surprise 

the engineer if he makes linear assumptions. 

7.4    Recommendations for Future Research 

The research presented in this dissertation sets the stage for several extensions. 

First, we considered only SISO plants for this work. The algorithm described in 

Appendix A should be extended to the MIMO case. 

Second, the optimal input sequence derivations could be extended to the MIMO 

plant. Although not trivial, the research documented here should form a solid basis 

for this augmentation. In the MIMO case, each input sequence would not be inde- 

pendent. Rather, each spectrum and cross-spectrum would become germane to the 

derivation. 

Third, the ID algorithm's performance should be evaluated within the context 

of model-order reduction. That is, models should be identified which are lower in 

order than the truth model. This extension is important because true dynamical 

systems are actually described by very high order transfer functions. 

Perhaps the most challenging and rewarding extension to this research involves 

the inclusion of the effects of control inputs to the optimization. This dissertation 

was based on open-loop identification, open-loop in the sense that the only inputs 
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directly analyzed originated in the input generator. In a closed-loop scenario, inputs 

to the plant are a combination of disturbances, the probing signals, reference signals, 

and a conditioned history of the plant outputs. Since the goal here was to enhance 

identification, no emphasis was placed on regulating the output (beyond constraining 

the output power). In contrast, a closed-loop approach would include weights on ID 

performance, input power, output power, and system performance. Furthermore, the 

controller would see the auxiliary inputs as disturbances. Thus, the controller must 

be designed with these probing inputs in the budget, allowing some of this perceived 

disturbance to manifest in the output, thereby enhancing the identification without 

seriously degrading the closed-loop performance. 
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Appendix A.   Iterative Minimum-Variance Algorithm 

This appendix contains a pseudo-code rendition of the Weighted Least Squares 

algorithm developed for this research. Incorporated in the algorithm are two lev- 

els of recursion. First, the algorithm allows for sliding a window of data through 

time, initializing the weighting matrix using the parameter estimates calculated from 

the previous data window. Second, the parameter estimates are used iteratively to 

update the weighting matrix for each time window. 

A.l    Notation 

A. 1.1 Matrices and Vectors. All vectors are column and are denoted by 

lower-case boldface, with individual components denoted by the vector's designating 

letter in normal-face. For example, Vj is the jth component of the vector v. Matrices 

are denoted by upper-case boldface (e.g. H). Superscript T ((-)T) denotes matrix 

transposition. Superscript -1 ((-)_1) denotes matrix inversion. Iteration count is 

given by a left-hand subscript (e.g. tO denotes the ^th iteration of 9). Parameter 

estimates are denoted by a hat ((•)). 

A. 1.2 Sequences. A right-hand subscript integer denotes the time index 

(e.g. t/fc represents the sequence y evaluated at the fcth time). A right-hand subscript 

integer applied to a vector denotes that vector evaluated at the time given by the 

subscript. A superscript integer in parentheses with a right-hand subscript integer 

applied to a vector denotes a history of a sequence arranged in a vector evaluated at 
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the time given by the subscript and having a length given by the superscript.  For 

example, 

yi" 

Vk 

yjt-i 

Vk-q+X 

is the vector of length q which contains elements of y recorded at the time instants 

k, k — 1,..., k — q + 1. 

A.2    Class of System Models 

The plant to identify is single-input-single-output, linear, time-invariant, finite- 

dimensional, and operates in discrete time, viz., its transfer function is 

nl v hz-1 + b2z~2 + • • • + bmz-m 

G{z) = : X  v ;      1 + axz~x + a2z~2 + • • • + anz~n 

Alternatively, the plant is described by the difference equation 

Vk = -aij/fc-i o,nyk-n + &l«jfc-l H h bmuk-m 

A.3    Identified Parameters 

Referring to the description of the system model above, the System Identifica- 

tion algorithm generates estimates of the n + m dimensional parameter vector 

-|T 
e = a\   •••   an   h   •••   b„ 

A.4    Inputs 

The inputs to the System Identification algorithm are sequences which repre- 

sent the system input and output time histories. 
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A-4-1 System Inputs. The inputs to the system are sequences of length 

q + m — 1: 

■ T 

Uk-l     Uk-2      • • ■     Uk-m-q+1 

These inputs are known exactly by the System Identification algorithm. 

A.4.2 System Outputs. The system outputs used for System Identification 

are corrupted by noise. That is, the Identification algorithm processes output se- 

quences of the past q + n plant outputs corrupted by independent, additive, white 

noise: 

Zk     Zk-1 Zk-n-q+1 

where 

zt = yt + r>t,   t = k, k-1, ...,k-n-q+l 

and 

£{v}}   =   al 

£{vtvj}   =   0 
V tj  3 t?j 

A.5   Prior Information 

m The degree of the plant (n — 1) and the order of the numerator (m) must be 

known. 

• The intensity of the measurement noise (crv) is not required for calculation of 

parameter estimates. However, av is needed for computation of the estimate 

of the parameter estimation error covariance. 

• Prior knowledge of the parameter values (though not required) can be used to 

initialize the algorithm. 
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A.6   Algorithm 

1. Initialization 

1.1. Choose the window size, q. Suggest q > 2(n + m)2. 

1.2. Set iteration stopping criteria: 

1.2.1. Set imax to the maximum allowable number of iterations. 

1.2.2. Set 8$ to represent the smallest change in the parameter estimate to 

be recognized. 

1.3. Initialize the time index count: 

k *— &o 

where ko > max(<7 + m — 1, q + n) 

1.4. Initialize the parameter estimate vector: 

1.4.1. With no prior knowledge of the parameters1: 

0fc-i 

0 

0 

1.4.2. With prior knowledge of the parameters: 

Si 

0fc-i 
On 

h 

Initial 

1.5. Initialize vectors zjj. , zjj._lv.., z^i^u^, u^._2,..., ujj._m with the first 

q + m — 1 system inputs and q + n system output measurements. 

^his initialization of the parameters causes the first iteration of the parameter estimate to be 
an unweighted least squares estimate. The weighting matrix described in step 2.4.2 becomes the 
identity matrix. 
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2. Outer loop: This loop is used to increment the data window through time. 

2.1. Reset the iteration count: 

i*—0 

2.2. Initialize the parameter estimate: 

2.3. Build regressor matrix, H: 

H u (?) 
k—m Zfc-1     _Zfc-2 Zfc-n     Ufc-1     Ufc-2 

2.4. Inner loop: This loop is used to iterate on the data for a fixed window 

(at time k). 

2.4.1. Increment the iteration counter: 

i <— i + l 

2.4.2. Build the weighting matrix (,-W): 
n 

Mo  <   1 + X)(Ä)2 

2.4.2.1. 

Mi 

N 

Mn 

n-1 

n-j 

«aj + E(«'2<)(''a<+i) 
*=1 

2.4.2.2. R 

Mo Mi "• Mn 0 ••• 0 

Mi Mo Mi •" Vn '•• : 

: Mi Mo Mi '-.0 

fin : Mi "'• '■• Mn 

0 Hn '"• Mo Mi : 

: '••"•• Mi Mo Mi 

0 ••• 0 Mn ••• Mi Mo 
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2.4.2.3. ,-W *— R_1 (matrix inverse) 

2.4.3. Calculate the parameter estimate error covariance matrix2: 

.p^_ [HT(,W)H]_1 

2.4.4. Generate the parameter estimates: 

A <— PHT(lW)zt?) 

2.4.5. Check need for more iterations. 

2.4.5.1. If \\i9k - i-\Bk\\ > 6e and i < i^ then go to Step 2.4. 

2.4.5.2. Else finish iterating: 

2.4.5.2.1. Store current estimate: 

0fc <— fin 

2.4.5.2.2. Continue with Step 2.5 

2.5. Check for more data. 

2.5.1. If more data exist 

2.5.1.1. Increment k: k <— k + 1. 

2.5.1.2. Shift data to make room for next measurements: 

Zk-j    <—   Zk-j+i,    j = n + q — 1   down to   1 

uk-j    *—    uk-j+i,    j = m + q — 1   down to   1 

2.5.1.3. Load zk. 

2.5.1.4. Load uk. 

2.5.1.5. Goto step 2. 

2.5.2. Else terminate. 

2The parameter estimate error covariance matrix estimate is actually given by irjJP. Since 
this represents modification by a scalar multiple (o^), the scalar cancels in the calculation of the 
parameter estimates; thus crv is only required for an accurate estimate of the estimation error 
covariance matrix. 
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Appendix B.   Existence of Se{\G(uj)\2} 

The plant's transfer function, G, used in this research is described by a set of 

parameters, denoted 8: 

C(z\   =        h"z~l + b2Z~2 + ■ • • + bnz~n 

K ) 1 + alZ-x + a2z-2 + ■■■ + anz-
n 

^n~ly^T + V (136) zn + axz
n~l + a2z

n~'J + ... + an 

where 

9± ai   •••   an   fei 

Now, the frequency response of the transfer function given in Equation (136) is 

found by evaluating G(z) at z = eJU"r and evaluating the magnitude of the resulting 

complex number, where u> is taken to be in Normalized Frequency Units (NFU) 

(-1 <w<l). 

Taking uncertainty into account, we treat the 8 vector as a random vector. 

Thus, the transfer function becomes a random variable: 

w      zn + aiz""1 + a2z
n~2 + • • • + an 

We can (formally) compute the expected value of the squared magnitude of 

this random transfer function: 

£e{|G(u,)|2} = l2je(0) [G(0,z)G(0,-*)U^ d6 (138) 

where pa (8) is the multidimensional probability density function associated with the 

random vector 8. 

The goal of this Appendix is to show that the integral given in Equation (138) 

does not in general exist. Thus, we concentrate on a simple representative example. 

168 



Namely, consider the case in which 0 consists of a single element, a, and G is a simple 

first-order transfer function: 

G(z) = — (139) 
z + a 

where K is a known constant and a is a random variable. 

Substituting Equation (139) into Equation (138), the expected value of the 

squared magnitude of this transfer function is formally computed by 

£e\\G(u)\2}=        PM,  1—rda (140) 

In particular, consider the expected value for u = 0 (i.e. the expected value of the 

transfer function at DC). Now, (140) becomes 

fc{|G(W = 0)|2} = j^jMj^da (141) 

The integrand in Equation (141) exhibits a second-order singularity at a = -1 

(depending on the form of pa). Thus, for many probability density functions, the 

integral does not exist. For example, if we assume the density function to be Gaus- 

sian, the expected value cannot be calculated. On the other hand, we could form pa 

such that the integral exists. One such form would be to assume that a is uniformly 

distributed along [0.25,0.75]. 

The simple example given here clearly illustrates that the expected value (taken 

over the random parameters) of the square of the magnitude of a random transfer 

function does not in general exist for all frequencies. Furthermore, if the transfer 

function is defined by many random coefficients, the interaction between the coeffi- 

cients will create singularities at many points in frequency. 
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